
Lecture 3. Assembly
Syntax and selected directives

Yuri Panchul, 2014

Microchip MPLAB X tools flow

From Microchip
Technology
MPLAB-ASMLINK32-User
-Guide.pdf

Symbols, numbers and expressions

● Symbols use letters, digits, underscore ‘_’
and period ‘.’

● Symbols may not begin with a digit
● Numbers - like in C, but also has binary

numbers - 0b01010101
● Expressions - like in C
● Special symbol “.” for program counter

Local labels for branches

● Special case - local labels “0:”, “1:”, … “9:”
● Used in branch instructions with suffix “f”

(“forward”) and “b” (“backward”)

1: b 1f; nop
2: b 1b; nop
1: b 2b; nop

Directives: Sections

● .text - program code section
● .data - initialized data section
● .rodata - initialized read-only data section

○ Used to place C const variables: const int a = 3;
● .bss - uninitialized data section

○ Initialized with zeroes by boot code
● .sdata - “small data” for use with gp register
● .sbss - also for use with gp register

Directives: Initialization

● Characters: .ascii “string1” [, …, “stringn”]
● Zero-terminated: .asciz “string1” [,

…,“stringn”]
● Bytes: .byte expr1 [, …,exprn]
● 2-byte halfword: .hword expr1 [, …,exprn]
● 4-byte word: .word expr1 [, …,exprn]
● 8-byte doubleword: .dword expr1 [, …,exprn]
● double float: .double value1 [, …,valuen]

Other data-related directives

● .global symbol
● .extern symbol [, size]
● .align [align [, fill]]
● .space size [, fill]

Directives to repeat code sequences

● .rept count … .endr
● .irp symbol value1 [, …,valuen] … .endr
● .irpc symbol value … .endr

.irp reg, 0, 1, 2, 3
lw $\reg, 1024 + \reg * 4 (sp)
.endr

Controlling code generation

● .set noat - assembler must not use at ($1)
register

● .set noreorder - assembler must not move
instructions inside branch delay slots

● .set nomacro - generate warnings for
so-called synthesized instructions that are
expanded into multiple machine instructions

Compile-time error directive

● .err
● .error “string”
● They are useful for conditional compilation

when preprocessor is used

Special: “Small” memory support

● gp - “global pointer”, register $28
● gp-relative addressing

○ A convention to quickly access “global” 64K memory
○ In addition to accessing memory in “normal” way
○ Saves 1 instruction to load upper part of the address

● Assembly support
○ .sdata section for grouping “small” memory variables
○ %gp_rel macro: lw t0, %gp_rel (my_variable) (gp)
○ .extern should be with size: .extern my_variable, 4

Thank you!

