
MIPS
Verified

™

Document Number: MD00324
Revision 01.05
June 12, 2011

MIPS Technologies, Inc.
955 East Arques Avenue

Sunnyvale, CA 94085-4521

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

CorExtend® Instruction Integrator’s Guide
for M4K®/4KE®/4KS™ and M14K™ Family

Cores

2 CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05 3

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Contents

Section 1: CorExtend® Instruction Specification.. 6
1.1: User-Defined Instruction Format for MIPS32® ISA ... 6
1.2: User-Defined Instruction Format for microMIPS™ ISA ... 6
1.3: User-Defined Instruction Requirements .. 6
1.4: Sample User-Defined Instruction Formats for MIPS32 ... 7

Section 2: Incorporating CorExtend® UDIs into the RTL ... 10
2.1: CorExtend RTL Modules ... 10

2.1.1: Module m4k_udi_custom/m14k_udi_custom... 11
2.1.2: Module m4k_udi_stub/m14k_udi_stub... 11
2.1.3: Reference CorExtend Modules .. 11

2.2: Top-level Modules m4k_top/m14k_top and m4k_cpu/m14k_cpu ... 11

Section 3: CorExtend® UDI Signal Interface.. 12
3.1: Interface Between CorExtend Block and Core .. 12
3.2: External Interface .. 13
3.3: Relative Timing of I/O Signals to UDI Module ... 13

Section 4: CorExtend® UDI Pipeline Interaction ... 15
4.1: Source Operands .. 15
4.2: Destination Register .. 16

4.2.1: General-Purpose Register as Destination.. 16
4.2.2: Internal UDI Register as Destination.. 16

4.3: Local UDI State and Context Switches.. 16
4.3.1: Local UDI Enable ... 16
4.3.2: CorExtend Enable Bit in Status Register ... 17

Section 5: CorExtend® UDI Timing Diagrams ... 18
5.1: UDI with Single-Cycle Latency .. 18
5.2: Back-to-Back UDIs with Single-Cycle Latency .. 19
5.3: UDI with Multi-Cycle Latency... 20
5.4: Multi-Cycle UDI Killed by Earlier Exception... 20
5.5: Pipelined UDI Using Internal Register as Destination ... 22
5.6: Pipelined UDI Killed by Exception Before Being Committed ... 23

Section 6: CorExtend® UDI Sample Implementations .. 25
6.1: One/Zero Count... 25
6.2: Pipelined Bit Swap with Local UDI State ... 25

Section 7: Verifying CorExtend® Instructions... 26
7.1: AVP Environment .. 26

7.1.1: AVP Documents... 26
7.1.2: AVP Installation.. 26
7.1.3: Setup to Run CorExtend AVPs on Soft Core Testbench ... 26

7.2: Reference AVPs for Sample Modules ... 27
7.2.1: AVP Suggestions ... 27

4 CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Section 8: References .. 28

Section 9: Document Revision History... 29

CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05 5

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Preface

This document describes the integration of the CorExtend® user-defined instruction (UDI) module for:

• MIPS32® Pro Series® processor cores, including the 4KE® Pro core family, the 4KSd™ Pro, and the M4K®
Pro cores.

• MIPS32® M14K™ family cores, which support the microMIPS™ Instruction Set Architecture.

The document defines the UDI interface available to a core integrator, and how the UDI module interacts with the rest
of the processor pipeline.

The CorExtend capability allows the core’s performance to be tailored for specific applications, while still maintain-
ing the benefits of the industry-standard MIPS32® instruction set architecture. By extending the instruction set with
custom instructions, UDIs can enable significant performance improvement in critical algorithms beyond what is
achievable with standard MIPS32 instructions.

A simple block diagram of a CorExtend UDI block is shown in Figure 1.

Figure 1 CorExtend® Block Diagram

The CorExtend UDI function is partitioned externally to the core pipeline, which makes it possible to add new
instructions by modifying only the CorExtend block. This enables new instructions to be added to a previously hard-
ened core, or can allow a UDI block to access external system logic.

The remainder of this document covers the details of integrating CorExtend instructions with the core RTL. Because
the CorExtend interface is tightly coupled to the core pipeline, the reader should first be familiar with the operation of
the pipeline as described in the Software User’s Manual for the appropriate processor core (References [1], [2], [3],
[4], [5]).

CorExtend UDI blockProcessor Core other system logic
(optional)

1 CorExtend® Instruction Specification

6 CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

1 CorExtend® Instruction Specification

This section describes the formats and requirements of CorExtend user-defined instructions (UDI).

1.1 User-Defined Instruction Format for MIPS32® ISA

The general format of a user-defined instruction is shown below:

A subset of the SPECIAL2 instructions are allowed for user-defined instructions. A SPECIAL2 instruction is speci-
fied when the Opcode field in bits [31:26] of the instruction are 011100. Then the Function field in bits [5:0] of the
instruction further defines the SPECIAL2 instruction type. For UDI instructions, bits [5:4] must be 01 and bits [3:0]
are available to encode the user’s instruction opcode. All other bits in the instruction word are available to the user.
Based solely on the encoding of bits [3:0] in the instruction word, 16 UDIs are available to the user. But more than 16
UDIs could be defined if the user encodes the instruction type in other available bits of the instruction word.

1.2 User-Defined Instruction Format for microMIPS™ ISA

If microMIPS ISA is supported, the general format of a user defined instruction is shown below :

The microMIPS user-defined instruction format is similar to that of MIPS32, but with the following differences:

• The SPECIAL2 major opcode is not used and is replaced by the microMIPS POOL32A major opcode.

• The minor opcode bits are in bits [2:0] are 011.

• The microMIPS ISA supports 7 user-defined instructions through the encoding of bits [5:3] in the instruction
word, but more user-defined instructions can be defined if the user encodes the instruction type in the other avail-
able bits of the instruction word.

1.3 User-Defined Instruction Requirements

The user-defined instructions should meet the following requirements:

• Only fixed integer instructions are permitted. No jumps, branches, loads or stores are allowed. Multiply or divide
operations are permitted, but they may not touch the HI/LO register pair within the MDU.

• The destination of the instruction may be a general-purpose register, or a register inside the UDI block.

31 26 25 21 20 16 15 6 5 0

SPECIAL2
011100

rs (optional) rt (optional) user-interpretable 01xxxx

6 5 5 10 6

31 26 25 6 5 0

POOL32A
0000000

user-interpretable xxx011

6 20 6

1.4 Sample User-Defined Instruction Formats for MIPS32

CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05 7

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

• Instructions with a destination of a general-purpose register can complete in a single cycle or multiple cycles. In
the case of multi-cycle latency, a signal output from the UDI block is used to stall the core pipeline until the UDI
operation completes. Instructions with a destination of a register internal to the UDI block can be fully pipelined,
largely independent of the core pipeline. These instructions do not stall the core, and are not stalled by the core,
but must obey certain core signals before committing their final results to the internal destination register.

• Instructions can have 2 general-purpose registers as operands, or 1 register and 1 immediate, or internal UDI reg-
isters, or any other combination as desired by the user. If general-purpose register operands are desired, then rs
must be encoded in bits [25:21] and rt must be encoded in bits [20:16] of the instruction word. The core will
always provide the register contents specified by these locations as inputs to the UDI block, but they can be
ignored if they are not used. If either rs or rt register operands are not needed, then these bits can also be inter-
preted freely by the user. Note that a pipeline interlock may occur with these register values when an earlier
instruction has a destination that corresponds to the bits in the rs or rt fields, even if the register operands are
unused by the UDI block.

• The destination register can be derived from any bits in the instruction format, since the UDI block provides the
destination register value back to the core. The signalling of the destination register must occur through combina-
tional decode of the instruction word in the same cycle, to allow the core to check for register dependencies of
the UDI destination with source register(s) of the following instruction. If the destination register is inside the
UDI block, R0 should be sent to the core as the destination register.

NOTE: Allowing an arbitrary destination register is a feature specific to these cores. This feature is not generally scalable for
higher performance pipelines and is not likely to be incorporated on future cores from MIPS Technologies. It is
strongly recommended that the destination register be rd, rt, or an internal register. The use of other destination
registers may limit the reusability of the UDI with future cores.

• The full 32-bit instruction word is sent to the UDI block. The UDI block is responsible for signaling which of the
16 UDIs, as determined by bits [3:0] of the instruction word, are not implemented. The core will indicate a
Reserved Instruction exception if the UDI is not implemented.

• A CorExtend Unusable exception can be indicated by the core when a UDI operation is attempted, if the CP0
Status.CEE bit is not set and the UDI_honor_cee signal is asserted.

• No other execution exceptions may be generated by a user-defined instruction.

• The CP0 Config0.UDI bit (bit [22]) indicates whether user-defined instructions are implemented in the proces-
sor. This bit is automatically set based on the value of the UDI_present output from the UDI block.

• Tool support:

• Automatic inclusion in the assembler.

• Intrinsic and inlining support in the compiler.

• No direct compiler inference.

• MIPSsim™ simulator support.

1.4 Sample User-Defined Instruction Formats for MIPS32

The general format of a user-defined instruction, as shown in Section 1.1, "User-Defined Instruction Format for
MIPS32® ISA", allows the user a large degree of flexibility in choosing how the available bits of the instruction word
(bits [25:6]) are used to encode UDIs. This subsection describes some possible formats which may be used, but is not
intended to be exhaustive.

1 CorExtend® Instruction Specification

8 CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Three general-purpose register operands plus 5 immediate bits

A UDI format with three register-based operands is shown below:

There are two source general-purpose register operands, encoded in the rs and rt fields, while the destination general-
purpose register is encoded in the rd field. In addition, 5 bits are available to pass immediate data, or encode internal
UDI register information, if desired. Immediate data could be used to specify additional source operand information,
or to further encode information about the type of user-defined instruction to be executed. UDI register information
could be used to specify additional sources from internal registers, or additional destinations to internal registers.

Two general-purpose register operands plus 10 immediate bits

A UDI format with two register operands is shown below:

There are two source general-purpose register operands, encoded in the rs and rt fields. In addition, 10 bits are avail-
able to pass immediate data, encode a destination general-purpose register, or encode internal UDI register informa-
tion. With this format, the destination register could be an internal UDI register, or overwrite one of the source
operands, either rs or rt, if desired. The internal UDI register information could also be used to specify additional
sources from internal registers.

One general-purpose register operand plus 15 immediate bits

A UDI format with one register operand is shown below:

There is a single source general-purpose register operand, encoded in the rs field. In addition, 15 bits are available to
pass immediate data, or encode a destination general-purpose register, or encode internal UDI register information.
With this format, the destination register could be an internal UDI register, or overwrite the rs source operand, if
desired. The internal UDI register information could also be used to specify additional sources from internal registers.

No general-purpose register operands plus 20 immediate bits

A UDI format with no direct register operands is shown below:

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2
011100

rs rt rd user-interpretable 01xxxx

6 5 5 5 5 6

31 26 25 21 20 16 15 6 5 0

SPECIAL2
011100

rs rt user-interpretable 01xxxx

6 5 5 10 6

31 26 25 21 20 6 5 0

SPECIAL2
011100

rs user-interpretable 01xxxx

6 5 15 6

31 26 25 6 5 0

SPECIAL2
011100

user-interpretable 01xxxx

6 20 6

1.4 Sample User-Defined Instruction Formats for MIPS32

CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05 9

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

In this format, all 20 bits are available to be interpreted by the user. This format might be used if the source operands
for the instruction do not come from general-purpose registers, but instead come from internal UDI registers, or are
specified as immediate data within the 20 user-interpretable bits. In addition, the destination register would also be
encoded somewhere within the 20 user-definable bits.

2 Incorporating CorExtend® UDIs into the RTL

10 CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

2 Incorporating CorExtend® UDIs into the RTL

This section describes some of the considerations for incorporating CorExtend user-defined instructions with the rest
of the processor core RTL. Review the Implementor’s Guide document for the appropriate MIPS32® processor core
(References [8], [9], [10]) or the MIPS32® M14K Family processor cores (References [11], [12]) for more general
details about the implementation of a soft core.

The CorExtend interface to implement user-defined instructions on a processor core is external to the core itself.
Although the CorExtend interface is external, it is tightly coupled to the execution unit within the core. When imple-
menting UDIs, adherence to a specific internal interface must be followed. The functionality and timing of the UDI
interface is described in later sections.

2.1 CorExtend RTL Modules

The location of the CorExtend UDI module within the RTL hierarchy is shown in Figure 2. The m4k_udi_custom
or m14k_udi_custom module is the primary location containing the description of CorExtend instructions. If
UDI interaction with external system logic is also desired, then variable width input and output external busses are
provided so these signals can be added without the need to modify the m4k_top or m14k_top module itself.

Figure 2 CorExtend® Module Location in RTL Hierarchy

If CorExtend instructions are desired in a processor core, their RTL description must be located in a Verilog module
named m4k_udi_custom or m14k_udi_custom. The module must be located in a file called m4k_udi_custom.v
or m14k_udi_custom.v, which resides in the directory $MIPS_PROJECT/proc/design/rtl. Several tem-
plate files, showing the required interface signals and example implementations, are provided in the release. See
Section 6, "CorExtend® UDI Sample Implementations" for more details about the included examples. The imple-
mentor should modify or copy a template file to create the Verilog description of the desired UDIs.

m4k_top or m14k_top

m4k_udi_custom/
m14k_udi_custom

m4k_cpu or m14k_cpu

m4k_core/
m14k_core

CorExtend interface

variable-width
external
interface

2.2 Top-level Modules m4k_top/m14k_top and m4k_cpu/m14k_cpu

CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05 11

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

If UDI operations are not desired, the m4k_udi_custom or m14k_udi_custommodule can be replaced with a stub
module called m4k_udi_stub or m14k_udi_stub. This stub module, which drives the correct default values to the
core interface, is provided in the RTL release.

2.1.1 Module m4k_udi_custom/m14k_udi_custom

The m4k_udi_custom/m14k_udi_custom module is instantiated inside the module m4k_top/m14k_top, a top-
level module that also instantiates the actual processor core (m4k_cpu/m14k_cpu). Logically, the CorExtend inter-
face straddles the E and M stages of the pipeline. A description of the signal interface of the m4k_udi_custom/
m14k_udi_custom module that must be maintained by the implementor is covered in Section 3, "CorExtend® UDI
Signal Interface".

When creating an RTL description for the m4k_udi_custom/m14k_udi_custom block, additional module hierar-
chy can be used as long as the additional modules are defined in the same m4k_udi_custom.v/
m14k_udi_custom.v file. Hierarchy defined in this manner is automatically picked up by the simulation and syn-
thesis scripts provided in the core release.

2.1.2 Module m4k_udi_stub/m14k_udi_stub

The m4k_udi_stub/m14k_udi_stub module is a default module to the core interface and used when the core
implementation does not contain any user-defined instructions. It contains an identical signal port list as the m4k_udi
or m14k_udimodule. The stub module sets the output UDI_ri_e to 1 and all other outputs to 0. It leaves all the inputs
unconnected.

2.1.3 Reference CorExtend Modules

Several example CorExtend UDI modules are included in a processor core RTL distribution. These examples demon-
strate use of the CorExtend interface, and are described in Section 6, "CorExtend® UDI Sample Implementations".
The example modules can be substituted for the m4k_udi_custom or m14k_udi_custom module shown in
Figure 2.

2.2 Top-level Modules m4k_top/m14k_top and m4k_cpu/m14k_cpu

The m4k_top/m14k_top module is essentially a wrapper that instantiates m4k_udi_custom/
m14k_udi_custom (or m4k_udi_stub/m14k_udi_stub) along with the processor core in m4k_cpu/
m14k_cpu. For basic CorExtend instructions, the m4k_top/m14k_top module should not need modification.

The interface between the m4k_udi_custom/ m14k_udi_custom CorExtend module and m4k_top/
m14k_top can accommodate interaction with other logic in the system. To facilitate the external communication
without the need to modify m4k_top/m14k_top, two programmable-width buses are already included in the
m4k_top/m14k_top/m14k_udi_custom modules. An external input bus, UDI_toudi, and output bus,
UDI_fromudi, are also present. Their widths can be set as desired using Verilog ‘define commands, which is usually
performed via the configuration graphical user interface provided with the soft core deliverables. Note that constraints
on these ports will need to be set during preparation for synthesis.

The synthesis flows provided by MIPS in the full soft core package target either m4k_top/m14k_top or m14k_cpu/
m14k_cpu as the top-level module. When targeting the m4k_top/m14k_top, the synthesis of the custom CorExtend
block is rolled into the synthesis flow for the rest of the core. This generally improves synthesis quality, without the
need to express detailed constraints on the CorExtend interface between the CorExtend block and the rest of the core.
With m4k_top/m14k_top as the synthesis target, the CorExtend functionality must of course be defined when the
processor core is built.

3 CorExtend® UDI Signal Interface

12 CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Alternatively, m4k_cpu/m14k_cpu can be chosen as the synthesis target. In this case, the CorExtend block is exter-
nal to the processor synthesis, so constraints must be specified for the CorExtend interface signals. The m4k_cpu/
m14k_cpu synthesis target might be useful when creating a hard core to which various CorExtend blocks might be
connected later. Care should be taken in defining the interface constraints as the core is hardened, however, since the
interface signals are not fully registered. When m4k_cpu/m14k_cpu is used as the synthesis target for the processor
core itself, a CorExtend block would then be synthesized and implemented stand-alone, or perhaps in combination
with other system logic.

3 CorExtend® UDI Signal Interface

Signals related to the CorExtend UDI are described in Table 1. Signal directions are relative to the CorExtend mod-
ule, not the processor core. Signals are generally asserted high. Signals with no bit range specified are one bit wide.
All signal names include a prefix, UDI_, to designate their status as CorExtend UDI interface signals. Many names
contain a suffix, _e or _m, indicating which pipeline stage the signal is related.

Timing is shown relative to the appropriate pipeline stage for each signal, when synthesizing the core for maximum
frequency. The cycle is divided roughly in third, and signal timings are binned based on whether inputs are available
or outputs are needed early, mid or late in each cycle. The relative timing can be relaxed when targeting the core for
less than its maximum frequency.

3.1 Interface Between CorExtend Block and Core

Table 1 CorExtend UDI Interface Signals

Name Direction
Relative
Timing Description

UDI_ir_e[31:0] Input early This is the complete instruction word. Although the module also gets rs and rt
source operands, the full instruction is provided so all or part of the source register
fields may be used to hold immediate values. Note that the implementer is respon-
sible for decoding the Opcode and Function fields.

UDI_irvalid_e Input early Indicates whether the value of the instruction word (UDI_ir_e) is valid or not.

UDI_rs_e[31:0] Input mid Source operand rs after the bypass mux.

UDI_rt_e[31:0] Input mid Source operand rt after the bypass mux.

UDI_endianb_e Input early Indicates that this instruction is executing in Big Endian mode. This signal is gen-
erally not needed unless a) the UDI instruction works on sub-word data that is
endian dependent, and b) the UDI block is designed to be bi-endian

UDI_kd_mode_e Input early Indicates that the instruction is executing in kernel or debug mode. This can be
used to prevent certain UDI instructions from being executed in user mode.

UDI_kill_m Input late Late arriving kill signal due to an exception generated by an earlier instruction.
This signal may optionally be used to deassert the UDI_stall_m output for
improved interrupt latency on multi-cycle UDIs whose results won’t be used.

UDI_start_e Input late This is the mpc_run_ie signal coming from the core pipeline control logic.

UDI_run_m Input late This is the mpc_run_m signal used to qualify UDI_kill_m.

UDI_greset Input mid Reset signal to be used to reset any state machines.

UDI_gclk Input N/A Clock input.

3.2 External Interface

CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05 13

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

3.2 External Interface

If the CorExtend block requires interface signals to an external block outside of m4k_top or m14k_top, it can do
so using the predefined top-level input and output ports described in Table 2. The width of each of these port is con-
figurable through the configuration GUI. These signals are entirely outside of the processor core.

Table 2 CorExtend™ External Interface

3.3 Relative Timing of I/O Signals to UDI Module

Figure 3 depicts the relative timing of inputs and outputs to and from the UDI block, within the pipeline cycle, when
maximum frequency is targeted.

UDI_gscanenable Input N/A Global scan enable.

UDI_ri_e Output mid A one bit signal which when high indicates that the SPECIAL2 instruction cur-
rently being executed is illegal (i.e., reserved). This signal is used by the Master
Pipeline Control (MPC) block within the core to signal an illegal instruction, how-
ever, this signal is sampled by MPC only if the current instruction is within the
SPECIAL2 range of user-defined instructions (bits [5:4] of the instruction are
2’b01).

UDI_rd_m[31:0] Output mid The 32 bit result of the executed instruction available in the M stage.

UDI_wrreg_e[4:0] Output late Register to write the result from the execution of this user-defined instruction. This
value is also passed on to mpc.

UDI_stall_m Output mid Signals that the UDI block is processing a multicycle instruction and needs to stall
the pipeline since the outputs need to be written into the register file. Should be set
to 0 for single-cycle instructions. This is an M stage signal.

UDI_present Output static Static signal that denotes whether any UDI support is available.

UDI_honor_cee Output static Indicates whether the core should honor the CorExtend Enable (CEE) bit contained
in the Status register. When this signal is asserted, Status.CEE is deasserted, and
a UDI operation is attempted, the core will take a CorExtend Unusable Exception.

Name Direction
Relative
Timing Description

UDI_toudi[N-1:0] Input N/A External input to CorExtend block.

UDI_fromudi[N-1:0] Output N/A Output from CorExtend block.

Table 1 CorExtend UDI Interface Signals (Continued)

Name Direction
Relative
Timing Description

3 CorExtend® UDI Signal Interface

14 CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 3 Relative Timing of Interface Signals with Respect to Pipe Stages

Tcycle

I-Stage E-Stage M-Stage

UDI_ir_e

UDI_irvalid_e

UDI_rs_e

UDI_rt_e

UDI_kill_mUDI_start_e

UDI_ri_e

UDI_rd_m

UDI_stall_m

UDI_wrreg_e

m4k_udi_custom/
m14k_udi_custom

UDI_run_m

4.1 Source Operands

CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05 15

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

4 CorExtend® UDI Pipeline Interaction

Figure 4 depicts how the CorExtend UDI block logically interacts with the rest of the core’s internal pipeline.

Figure 4 Interaction of the CorExtend® UDI Module with the Pipeline

The interaction of user-defined instructions with the core pipeline is handled implicitly by the pipeline control logic.
Additional information about the state of the core pipeline is required for instructions with a destination of a register
internal to the UDI block.

4.1 Source Operands

The full register values specified by the rs and rt operands, as encoded in the instruction word, are always supplied to
the UDI module during the E stage, regardless of whether a particular UDI format actually uses those registers as
source operands. These rs and rt values participate in dependency checking versus the destination register of the pre-
vious instruction. A pipeline interlock may occur if the previous instruction’s destination matches the rs and/or rt reg-
ister of the UDI, and that destination register is not available due to a stall in the pipeline.

For simplicity, the pipeline control logic always assumes that rs and rt source operands are encoded in the instruction
word in the “normal” location, because this is likely to be the most prevalent case. If a UDI format does not actually
use these source operands, then some unintended stalling may occur based on the contents of these bits in the instruc-
tion word if false dependencies are detected, but functionally this will not present a problem. The UDI module will
need to handle instructions requiring source operands from internal UDI registers. Even in this case, the rs and rt
operands are supplied by the core to the UDI module.

The source operands may be provided directly from the register file, or from bypass sources, depending on the execu-
tion of older instructions within the pipeline.

E-Stage M-Stage

RF

IR

RF

Bypass
UDI_rs_e

UDI_rt_e

Pipe Control

Decode

UDI

UDI_rd_m

UDI_wrreg_e UDI_stall_m

UDI_ri_e

UDI_ir_e

4 CorExtend® UDI Pipeline Interaction

16 CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

4.2 Destination Register

The UDI module is required to send the destination register back to the pipeline control logic during the E stage, even
if the destination is not to a general-purpose register. Since the user is free to encode the destination register anywhere
within the available bits of the UDI, this is the only way that the pipeline control logic can be informed of the destina-
tion register. If the destination register is not a general-purpose register, but an internal UDI register, the R0 register
should be sent back to the core as the “destination register”.

4.2.1 General-Purpose Register as Destination

The destination register is used by the pipeline control logic to determine if the UDI’s destination is also a source
operand for later instructions. If necessary, the UDI result will be bypassed to a following dependent instruction,
instead of coming directly from the register file.

Normally, the pipeline control logic assumes that a UDI has single-cycle latency, implying that the result will be pro-
vided one clock after the instruction was presented to the UDI module. Multi-cycle operations are supported via
assertion of the UDI_stall_m signal by the UDI module, and is used when the destination is to a general-purpose reg-
ister, but the results are not available yet. When asserted, UDI_stall_m indicates that the UDI result on the UDI_rd_m
bus is not yet valid, and will cause the M stage and all earlier stages to be frozen until the result is valid. Later pipe-
line stages can continue to operate. Technically, this pipeline situation is referred to as a slip, but in this document the
terms stall and slip are generally used interchangeably.

The pipeline support allows UDIs with single-cycle latency to issue and complete in back-to-back cycles with no
pipeline slip penalties, even if the UDI destination is supplied to a second consecutive UDI as a source operand.

4.2.2 Internal UDI Register as Destination

The UDI module can also progress largely independent of the core pipeline, if the instruction’s destination is to an
internal UDI register. In this case, the core pipeline sees the UDI module as having single-cycle latency. This is
accomplished by sending R0 to the core as the destination register. The core can then progress, and not wait on the
UDI instruction completing.

Special consideration needs to be taken when writing the final results to the internal UDI register. The UDI module
needs to avoid writing data before the instruction is guaranteed to complete. When the instruction is in the “M stage”
of the core pipeline, it can still be killed and restarted due to an exception. This can be successfully handled by watch-
ing two specific core signals: UDI_run_m and UDI_kill_m. When the UDI instruction is in the equivalent of the “M
stage” in the core pipeline, and UDI_run_m is asserted (with UDI_kill_m being de-asserted), the instruction can no
longer be killed, and the UDI can freely write its results to the internal register (whenever the data is available).

4.3 Local UDI State and Context Switches

If the UDI block has internal state, that state may need to be saved and restored on a context switch. If there is a sig-
nificant amount of state and not all processes use UDI, it may be advantageous to only save the UDI state for pro-
cesses that use UDI. The software implications for handling context switches are beyond the scope of this document,
but this section describes a few of the hardware mechanisms on the CorExtend interface that can be of help.

4.3.1 Local UDI Enable

One way to handle the saving of UDI state is to create a UDI enable within the UDI block that can only be written by
the kernel. The UDI_kd_mode_e signal is available to indicate that the E-stage instruction is executing in kernel or
debug mode. On a new process, the UDI block is disabled; if the user code attempts to execute a UDI instruction, an

4.3 Local UDI State and Context Switches

CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05 17

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

RI exception will be taken. The kernel can then enable the UDI block, mark this process as using UDI, and save/
restore the UDI state on context switches.

Note that this method incurs a fairly significant overhead, and in many cases, it may be more efficient to always save
and restore the UDI state.

4.3.2 CorExtend Enable Bit in Status Register

Alternatively, the CEE (CorExtend Enable) bit in the Status register can be used to signal the operating system that
the current process is using CorExtend operations, so the local state can be tracked as necessary. The Status.CEE bit
can be written by privileged software. Whether CEE has any effect on the core is determined by the UDI_honor_cee
signal on the CorExtend interface. If the CorExtend block deasserts this signal, the value of the CEE bit has no effect
on the core.

If local state exists and UDI_honor_cee is asserted, the intended usage is as follows:

1. Software initializes the CEE bit to 0, to indicate that CorExtend operations are not enabled.

1. The first time a UDI operation is attempted, the core will take a CorExtend Unusable exception. This dedicated
exception, instead of a general Reserved Instruction exception, can be used to inform the operating system on a
per-process basis that UDI operations containing local state are desired.

2. The OS kernel does whatever it needs to prepare for saving/restoring CorExtend state, and then sets the CEE bit
to 1.

3. Upon return from the handler, the CorExtend instruction can now be executed.

4. Repeat for other processes.

5 CorExtend® UDI Timing Diagrams

18 CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

5 CorExtend® UDI Timing Diagrams

The following figures describe the pipeline timing for several typical CorExtend UDI operations:

5.1 UDI with Single-Cycle Latency

Figure 5 on page 18 shows signal timing for a single-cycle user-defined instruction. In cycle 2, the user-defined
instruction word reaches the E stage and is presented to the UDI module. If this was an unsupported UDI operation,
then the UDI module would have asserted UDI_ri_e in that same cycle. The UDI module returns the result data in the
following cycle. The UDI_run_m input signal can be ignored, and is not included in the diagram.

Figure 5 Single-Cycle UDI Operation

UDI_start_e

UDI_ir_e

UDI_r[s,t]_e

UDI_rd_m

UDI_kill_m

UDI_irvalid_e

UDI_greset

UDI_gclk

1 2 3 4 5 6

UDI_ri_e

UDI_wrreg_e

UDI_stall_m

UDI

Valid

Valid

Valid

5.2 Back-to-Back UDIs with Single-Cycle Latency

CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05 19

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

5.2 Back-to-Back UDIs with Single-Cycle Latency

Figure 6 on page 19 shows timing for two back-to-back user-defined instructions, UDI0 and UDI1, both with single-
cycle latency. Multiple UDIs can be issued and completed in consecutive cycles with no pipeline stalls. The
UDI_run_m input signal can be ignored, and is not included in the diagram.

Figure 6 Back-to-Back Single-Cycle UDI Operation

UDI_start_e

UDI_ir_e

UDI_r[s,t]_e

UDI_rd_m

UDI_kill_m

UDI_irvalid_e

UDI_greset

UDI_gclk

1 2 3 4 5 6

UDI_ri_e

UDI_wrreg_e

UDI_stall_m

UDI0

Valid0

Valid0

UDI1

Valid1

Valid1

Valid0 Valid1

5 CorExtend® UDI Timing Diagrams

20 CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

5.3 UDI with Multi-Cycle Latency

A user-defined instruction with 4-cycle latency is shown in Figure 7 on page 20. This is similar to the single-cycle
case shown in Figure 5, but now in cycle 3, the UDI module signals UDI_stall_m, indicating that the result data is not
yet ready. This continues for three additional cycles. Finally in cycle 7, the result data is available, so UDI_stall_m is
deasserted and the result data is driven on UDI_rd_m. The UDI_run_m input signal can be ignored, and is not included
in the diagram.

Figure 7 Multi-Cycle UDI Operation

5.4 Multi-Cycle UDI Killed by Earlier Exception

Figure 8 shows the signal timing for a user-defined instruction that is killed due to an exception on an earlier instruc-
tion in the pipeline. In this case, UDI_kill_m is asserted in cycle 4. The UDI module responds to this in the following
cycle, by deasserting the UDI_stall_m signal. The UDI_run_m input signal can be ignored, and is not included in the
diagram.

The UDI_kill_m signal is provided to the UDI module to allow faster processing of exceptions when a multi-cycle
UDI operation will be aborted. The core control logic automatically takes care of blocking the register file write of a
UDI destination when the UDI will be aborted due to an exception on an older instruction in the pipeline, but the core

UDI_start_e

UDI_ir_e

UDI_r[s,t]_e

UDI_rd_m

UDI_kill_m

UDI_irvalid_e

UDI_greset

UDI_gclk

1 2 3 4 5 6

UDI_ri_e

UDI_wrreg_e

UDI_stall_m

UDI

Valid

Valid

Valid

7

5.4 Multi-Cycle UDI Killed by Earlier Exception

CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05 21

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

pipeline is stalled and the exception is processed until the UDI_stall_m signal deasserts; thus, exception latency can be
improved if the UDI module uses the UDI_kill_m signal to deassert UDI_stall_m on long latency UDI operations,
though the results of the UDI operation will be aborted anyway. Since UDI_kill_m is available late in the cycle, it is
recommended that it be used sequentially to clear UDI_stall_m only in the next cycle.

Figure 8 Killed UDI Operation

UDI_start_e

UDI_ir_e

UDI_r[s,t]_e

UDI_rd_m

UDI_kill_m

irvalid_e

UDI_greset

UDI_gclk

1 2 3 4 5 6

UDI_ri_e

UDI_wrreg_e

UDI_stall_m

UDI

Valid

Valid

7

5 CorExtend® UDI Timing Diagrams

22 CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

5.5 Pipelined UDI Using Internal Register as Destination

Figure 9 shows the normal operation of a pipelined UDI instruction whose destination is an internal UDI register.
Notice the UDI_run_m signal is generally asserted the cycle after the UDI_start_e signal. This might not be the case
if the pipeline is stalled for another reason.

After UDI_run_m is seen asserted (without UDI_kill_m asserted) the instruction can no longer be killed and restarted
by the pipeline, and it is safe to commit its results to the internal register. As can be seen in the figure, because the
instruction destination is an internal register, R0 is sent to the core on UDI_wrreg_e. Then, in the “M-stage”, any data
can be on UDI_rd_m. Also, notice that UDI_stall_m does not need to be asserted for the pipelined UDI instruction.

5.6 Pipelined UDI Killed by Exception Before Being Committed

CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05 23

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 9 Pipelined UDI with Internal Result Registers

5.6 Pipelined UDI Killed by Exception Before Being Committed

Figure 10 shows a pipelined UDI that receives a delayed UDI_run_m. When UDI_run_m is finally asserted,
UDI_kill_m is also asserted. The UDI results should not be committed to the internal register because the instruction
could be restarted.

UDI_start_e

UDI_ir_e

UDI_r[s,t]_e

UDI_rd_m

UDI_kill_m

UDI_irvalid_e

UDI_greset

UDI_gclk

1 2 3 4 5 6

UDI_ri_e

UDI_wrreg_e

UDI_stall_m

UDI

Valid

R0

7

UDI_run_m

XXX

5 CorExtend® UDI Timing Diagrams

24 CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 10 Pipelined UDI killed by exception

UDI_start_e

UDI_ir_e

UDI_r[s,t]_e

UDI_rd_m

UDI_kill_m

UDI_irvalid_e

UDI_greset

UDI_gclk

1 2 3 4 5 6

UDI_ri_e

UDI_wrreg_e

UDI_stall_m

UDI

Valid

R0

7

UDI_run_m

XXX

6.1 One/Zero Count

CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05 25

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

6 CorExtend® UDI Sample Implementations

Several sample Verilog modules are included in the RTL release, showing example implementations of CorExtend™
UDI. The Verilog files are located in the directory $MIPS_PROJECT/proc/design/rtl and $MIPS_HOME/
$MIPS_CORE/proc/design/rtl of a core release.

6.1 One/Zero Count

Several sample modules implement the same two instructions, but with varying latency. The instructions either count
the number of zeroes (if ir_e[5:0] == 6’b010000) or ones (if ir_e[5:0] == 6’b010001) on the word provided via the
rs_e source operand and return the count as the result, with a general-purpose register as the destination. The instruc-
tion format incorporated in these examples is described in "Three general-purpose register operands plus 5 immediate
bits", on page 8, although the rt_e source operand is unused.

The one/zero count modules are named:

• m4k_udi/m14k_udi: Implements one/zero count in a single cycle.

• m4k_udi_2cycle/m14k_udi_2cycle: Implements one/zero count in two cycles.

• m4k_udi_multicycle/m14k_udi_multicycle: Implements one/zero count in three cycles. Shows the use
of the kill_m input to deassert stall_m.

6.2 Pipelined Bit Swap with Local UDI State

Another example implements a pipelined UDI module with internal result storage. It does basic bit swapping, and
includes six different instructions:

1. Move from Hi: Move data from internal UDI register “hi” to General-Purpose Register.

2. Move from Lo: Move data from internal UDI register “lo” to General-Purpose Register.

3. Move to Hi/Lo: Move General Purpose-Register data to internal UDI registers.

4. Swap: Use General-Purpose Register data as source operands, Execute a bit swap, Store results in internal UDI
registers.

5. Swap Accumulate: Use General-Purpose Register data and UDI internal registers as source operands, execute a
bit swap, store results in UDI internal registers.

6. Swap Accumulate GPR: Use General-Purpose Register data and UDI internal registers as source operands,
execute a bit swap, store results in a General-Purpose Register.

Note: The above hi/lo registers do not refer to the MDU hi/lo register pair. These are simply internal UDI registers.

This example module is:

• m4k_udi_pipe/m14k_udi_pipe: Implements simple bit shifting in a pipeline with internal HI/LO registers to
store results for use by other UDI instructions.

7 Verifying CorExtend® Instructions

26 CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

7 Verifying CorExtend® Instructions

The ability to add instructions to a processor core provides a great deal of flexibility to the CorExtend implementor,
but also poses some functional verification challenges. Since the function of CorExtend instructions is completely
defined by the implementor, the verification of added instructions is generally beyond the scope of deliverables pro-
vided by MIPS. MIPS recommends that this verification usually be handled in the context of how the core and
accompanying CorExtend block are instantiated in the implementor’s full SOC. However, some additional verifica-
tion deliverables are provided with a processor core that a CorExtend implementor may find helpful.

7.1 AVP Environment

Internally, MIPS uses a suite of Architectural Verification Programs (AVPs) to test the compatibility of various
implementations of the MIPS Architecture. A subset of this AVP setup, consisting of the kernel environment and
sample diagnostics used to test the CorExtend reference designs, is included with a processor core delivery in source
form. This environment can be extended and used for creating assembly-level tests that exercise the CorExtend
implementor’s actual instructions in conjunction with the core pipeline.

7.1.1 AVP Documents

The MIPS® Architecture Verification Programs Release Notes [15] provides an overview of the AVP environment
and installation instructions. The MIPS® Architecture Verification Programs User’s Manual [16] provides details
about the use of the AVP environment. MIPS recommends that a user review these documents to understand the AVP
infrastructure. These documents are included in the $MIPS_HOME/$MIPS_CORE/doc area of a processor core
release.

7.1.2 AVP Installation

AVP-related tar files are located in the $MIPS_PROJECT/CorExtend_AVP area of a processor core release. This
directory contains two tar files, one for the general AVP environment and another for the core-specific CorExtend
example diags. These tar files should be installed as described in the AVP Release Notes [15]. Note that the general
AVP tar file must be installed first.

7.1.3 Setup to Run CorExtend AVPs on Soft Core Testbench

After following the instructions for AVP installation, the CorExtend AVPs may be run using the soft core simulation
environment by following a few basic steps:

1. From the $MIPS_PROJECT/proc/verification directory, generate a DiagInfo.CorExtend file by
typing:

% perl $MIPS_HOME/$MIPS_CORE/bin/buildCorExtendDiagInfo

2. In that same directory, edit the DiagInfo.user file. In that file is an example include statement. Un-comment
that statement and using the example as a guide, replace <absolute path to DiagInfo file> with the absolute path
to the generated DiagInfo.CorExtend file.

In addition to diagnostic attributes needed for running individual AVPs, a diagnostic group of CorExtend AVPs in all
modes, as specified by the AVP release, is also generated. This group, Pro_CorExtend, may be used for regression
purposes. General details about using the soft core simulation environment can be found in the appropriate Implemen-
tor’s Guide document ([8], [9], [10]), [11], [12].

7.2 Reference AVPs for Sample Modules

CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05 27

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

7.2 Reference AVPs for Sample Modules

Once the AVP environment has been installed, the directory $MIPSARCHROOT/Diag/AVP/CorExtend/
MIPS32-4KE holds several subdirectories containing diagnostics that exercise the example CorExtend modules dis-
cussed in Section 6, "CorExtend® UDI Sample Implementations".

Generally, one diag corresponds to the example RTL module of the same name.

7.2.1 AVP Suggestions

A detailed description for writing suitable assembly verification tests is beyond the scope of this document. However,
some suggestions and hints to keep in mind when verifying CorExtend instructions are presented, especially as they
relate to some interesting cases illustrated in the example diags.

Self-checking Diags

MIPS generally suggests making user-written CorExtend diags self-checking to the extent possible. This means that
the diag should “know” the result to expect for a UDI operation and ensure that any state update occurs appropriately.

GPR Dependencies

Be sure to exercise dependencies between adjacent CorExtend instructions, in which one CorExtend instruction pro-
duces a GPR result that is used as a source operand by the next CorExtend instruction. The internal core pipeline
logic should take care of handling these dependencies, but it is still a recommended sequence to test.

Destination of GPR R0

When a CorExtend instruction targets R0 as a destination, make sure that UDI_wrreg_e is not asserted. This case
should be explicitly tested for GPR-targeted CorExtend instructions.

Local State

If the CorExtend block writes its results to locally held storage, verify that the state is properly updated in the pres-
ence of pipeline stalls and kills.

Changing Kernel Mode and Endianness

If the CorExtend block is making use of the UDI_kd_mode_e and/or UDI_endianb_e signals, note that there are haz-
ards around the changing of these signals. Refer to the appropriate Software User’s Manual [References 1, 2, 3] for
more details about hazards. Hazards can generally be eliminated by interposing one of the hazard barrier instructions
between the cause of the hazard and its consumer.

8 References

28 CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

8 References

This appendix lists other documents available from MIPS Technologies, Inc. that are referenced elsewhere in this
document. These documents may be included in the $MIPS_PROJECT/doc area of a typical soft or hard core
release, or in some cases may be available on the MIPS web site, under http://www.mips.com/publications/
index.html.

1. MIPS32® 4KE™ Processor Core Family Software User’s Manual
MIPS document: MD00103

2. MIPS32® 4KSd™ Processor Core Software User’s Manual
MIPS document: MD00319

3. MIPS32® M4K™ Processor Core Software User’s Manual
MIPS document: MD00249

4. MIPS32® M14K™ Processor Core Software User’s Manual
MIPS document: MD00668

5. MIPS32® M14Kc™ Processor Core Software User’s Manual
MIPS document: MD00674

6. MIPS32® M14KE™ Processor Core Software User’s Manual
MIPS document: MD00813

7. MIPS32® M14KEc™ Processor Core Software User’s Manual
MIPS document: MD00821

8. MIPS32® 4KE™ Processor Core Family Implementor’s Guide
MIPS document: MD00114

9. MIPS32® 4KSd™ Processor Core Implementor’s Guide
MIPS document: MD00321

10. MIPS32® M4K™ Processor Core Implementor’s Guide
MIPS document: MD00250

11. MIPS32® M14K™ Processor Core Implementor’s Guide
MIPS document: MD00667

12. MIPS32® M14Kc™ Processor Core Implementor’s Guide
MIPS document: MD00673

13. MIPS32® M14KE™ Processor Core Implementor’s Guide
MIPS document: MD00811

14. MIPS32® M14KEc™ Processor Core Implementor’s Guide
MIPS document: MD00819

15. MIPS® Architecture Verification Programs Release Notes
MIPS document: MD00120

7.2 Reference AVPs for Sample Modules

CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05 29

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

16. MIPS® Architecture Verification Programs User’s Manual
MIPS document: MD00121

9 Document Revision History

Revision Date Description

01.00 November 12, 2002 Initial release.

01.01 March 5, 2003 Added note about choosing destination registers that will work with future
cores.

01.02 November 3, 2004 • Major updates to reflect hierarchy and signal name prefix changes due to
externalization of CorExtend interface.

• Changed title from “Implementor’s Guide” to “Integrator’s Guide”.
• Added CorExtend Enable capability and CorExtend Unusable exception.
• Clarified types of exceptions that are possible with CorExtend instruc-

tions.
• Added new section on functional verification.
• Used ® symbol for registered MIPS32® references. Made trademark

usage more consistent.

01.03 August 29, 2008 • Updated document template

01.04 March 14, 2010 • Added M14K and M14Kc cores to this document
• Generalized the term “Pro Series” to “Processor Core” to cover M14K &

M14Kc cores.
• Added microMIPS user-defined instruction format description (1.2)

which is supported by M14K & M14Kc.
• Changed title from “MIPS32® ProSeries® CorExtend® Instruction Inte-

grator’s Guide” to “CorExtend® Instruction Integrator's Guide for M4K/
4KE/4KS/M14K/M14Kc Cores”.

01.05 June 12. 2011 • Added M14KE and M14KEc cores to this document
• Changed title from “CorExtend® Instruction Integrator's Guide for

M4K/4KE/4KS/M14K/M14Kc Cores” to “CorExtend® Instruction Inte-
grator's Guide for M4K/4KE/4KS and M14K Family Cores”.

9 Document Revision History

30 CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision 01.05

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores, Revision: 01.05

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Template: nW1.03, Built with tags: 1D

Unpublished work © MIPS Technologies, Inc. All rights reserved. Unpublished rights reserved under the copyright laws of the United States of America and
other countries.

This document contains information that is confidential and proprietary to MIPS Technologies, Inc. ("MIPS Technologies") and may be disclosed only as
permitted in writing by MIPS Technologies or an authorized third party. Any copying, reproducing, modifying, use or disclosure of this information (in whole
or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a minimum, this information
is protected under trade secret, unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise. MIPS Technologies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document may only be disclosed to the United States government ("Government"), or to Government users, with prior written
consent from MIPS Technologies or an authorized third party. The information contained in this document constitutes one or more of the following: commercial
computer software, commercial computer software documentation or other commercial items. If the user of this information, or any related documentation of
any kind, including related technical data or manuals, is an agency, department, or other entity of the Government, the use, duplication, reproduction, release,
modification, disclosure, or transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition
Regulation 12.212 for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information
by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this
information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim, MIPSpro, MIPS Technologies
logo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K, 5K, 5Kc, 5Kf, 24K, 24Kc,
24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kf, 74Kc, 1004K, 1004Kc, 1004Kf, R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the
user experience.", BusBridge, Bus Navigator, CLAM, CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2
NAVIGATOR, HyperDebug, HyperJTAG, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microMIPS, OCI, PDtrace, the Pipeline, Pro Series, SEAD,
SEAD-2, SmartMIPS, SOC-it, System Navigator, and YAMON are trademarks or registered trademarks of MIPS Technologies, Inc. in the United States and
other countries.

All other trademarks referred to herein are the property of their respective owners.

	CorExtend® Instruction Integrator’s Guide for M4K®/4KE®/4KS™ and M14K™ Family Cores
	Contents
	1 CorExtend® Instruction Specification
	1.1 User-Defined Instruction Format for MIPS32® ISA
	1.2 User-Defined Instruction Format for microMIPS™ ISA
	1.3 User-Defined Instruction Requirements
	1.4 Sample User-Defined Instruction Formats for MIPS32

	2 Incorporating CorExtend® UDIs into the RTL
	2.1 CorExtend RTL Modules
	2.1.1 Module m4k_udi_custom/m14k_udi_custom
	2.1.2 Module m4k_udi_stub/m14k_udi_stub
	2.1.3 Reference CorExtend Modules

	2.2 Top-level Modules m4k_top/m14k_top and m4k_cpu/m14k_cpu

	3 CorExtend® UDI Signal Interface
	3.1 Interface Between CorExtend Block and Core
	3.2 External Interface
	3.3 Relative Timing of I/O Signals to UDI Module

	4 CorExtend® UDI Pipeline Interaction
	4.1 Source Operands
	4.2 Destination Register
	4.2.1 General-Purpose Register as Destination
	4.2.2 Internal UDI Register as Destination

	4.3 Local UDI State and Context Switches
	4.3.1 Local UDI Enable
	4.3.2 CorExtend Enable Bit in Status Register

	5 CorExtend® UDI Timing Diagrams
	5.1 UDI with Single-Cycle Latency
	5.2 Back-to-Back UDIs with Single-Cycle Latency
	5.3 UDI with Multi-Cycle Latency
	5.4 Multi-Cycle UDI Killed by Earlier Exception
	5.5 Pipelined UDI Using Internal Register as Destination
	5.6 Pipelined UDI Killed by Exception Before Being Committed

	6 CorExtend® UDI Sample Implementations
	6.1 One/Zero Count
	6.2 Pipelined Bit Swap with Local UDI State

	7 Verifying CorExtend® Instructions
	7.1 AVP Environment
	7.1.1 AVP Documents
	7.1.2 AVP Installation
	7.1.3 Setup to Run CorExtend AVPs on Soft Core Testbench

	7.2 Reference AVPs for Sample Modules
	7.2.1 AVP Suggestions

	8 References
	9 Document Revision History

