

Document Number: MD00941
Revision 01.01
July 30, 2014

Imagination Technologies Ltd.
955 East Arques Avenue

Sunnyvale, CA 94085-4521

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

MIPS
Verified™

MIPS32® microAptiv™ UP Processor
Core Family Integrator’s Guide

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Template: nDb1.03, Built with tags: 1D

Confidential. Neither the whole nor any part of this document/material, nor the product described herein, may be
adapted or reproduced in any material form except with the written permission of Imagination. All logos, products
and trade marks are the property of their respective owners. This document may only be distributed subject to the
terms of an applicable Non-Disclosure or Licence Agreement with Imagination.

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 3

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Table of Contents

Chapter 1: Overview ... 9
1.1: Environment Variable Setup.. 9

1.1.1: microAptiv UP Deliverables.. 9
1.2: Other Documents .. 10

Chapter 2: Signal Descriptions ... 11
2.1: Naming Conventions ... 11
2.2: Top-level Hierarchy ... 12
2.3: Detailed Signal Descriptions.. 13

2.3.1: Signals at m14k_cpu Level .. 14
2.3.2: External Interface Signals on m14k_top Level to Custom Blocks.. 27

Chapter 3: AHB-Lite Interface.. 29
3.1: Interface Transactions ... 29

3.1.1: Basic Transfers .. 29
3.1.2: Transfer Types ... 31
3.1.3: Transfer Size.. 32
3.1.4: Burst Operation .. 32
3.1.5: Waited Transfers.. 34
3.1.6: Protection Control .. 35
3.1.7: Locked Transfers ... 35

3.2: Clock Ratios .. 36
3.3: Write Buffer.. 37
3.4: Merging Control ... 37

Chapter 4: Interrupt Interface .. 39
4.1: Introduction.. 39
4.2: Compatibility and Vectored Interrupt Modes ... 39
4.3: External Interrupt Controller Mode .. 40

Chapter 5: EJTAG Interface ... 45
5.1: EJTAG versus JTAG ... 45

5.1.1: EJTAG Similarities to JTAG... 45
5.1.2: Sharing EJTAG Resources with JTAG .. 46

5.2: How to Connect EJ_* Pins .. 48
5.2.1: EJTAG Chip-Level Pins ... 48
5.2.2: EJTAG Device ID Input Pins .. 50
5.2.3: EJTAG Software Reset Pins .. 50

5.3: cJTAG Interface... 51
5.4: Multi-Core Implementations... 52

5.4.1: TDI/TDO Daisy-Chain Connection ... 53
5.4.2: Multi-Core Breakpoint Unit ... 53

5.5: Trace Capability... 54
5.6: SecureDebug... 55

Chapter 6: Coprocessor Interface... 57

4 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

6.1: Introduction.. 57
6.2: Coprocessor Instructions... 58
6.3: Signal Configuration .. 59
6.4: Interface Protocols... 60

6.4.1: Instruction Dispatch.. 63
6.4.2: To Coprocessor Data Transfer... 65
6.4.3: From Coprocessor Data Transfer .. 66
6.4.4: Condition Code Checking .. 66
6.4.5: Coprocessor Exceptions .. 67
6.4.6: Instruction Nullification ... 69
6.4.7: Instruction Killing .. 70

6.5: Power Saving Issues ... 71
6.5.1: No Coprocessor Present.. 71
6.5.2: How to Use CP2_idle ... 71
6.5.3: Gating the Clock to the Coprocessor ... 72
6.5.4: Using Strobe Signals as Gating Inputs on the Sub-interfaces ... 72

6.6: Template for Coprocessor Modules .. 73

Chapter 7: Scratchpad RAM Interface .. 75
7.1: SPRAM Features... 75
7.2: SPRAM Overview.. 76

7.2.1: SPRAM Differences From a Cache ... 77
7.2.2: Independent Tag/Data Accesses ... 77
7.2.3: Timing Considerations ... 79
7.2.4: Delayed Stores... 79
7.2.5: Tag Reads and Writes ... 80
7.2.6: Backstalling the SPRAM Interface ... 80
7.2.7: Access Granularity ... 80
7.2.8: Write Strobe with 0 Write Mask.. 81
7.2.9: Unified I/D SPRAM... 81
7.2.10: Restartability of SPRAM Accesses .. 82
7.2.11: Connecting I/O Devices to the Scratchpad Interface ... 82
7.2.12: Null Connection to Unused SPRAM Interface.. 82

7.3: SPRAM Interface Transactions ... 83
7.3.1: Single Read.. 83
7.3.2: Single Multi-Cycle Read... 84
7.3.3: Single Write.. 85
7.3.4: Single Multi-Cycle Write ... 86
7.3.5: Simultaneous Tag Read and Data Write.. 87
7.3.6: Back-to-Back Reads .. 88
7.3.7: Read-Write-Read Sequence.. 89
7.3.8: Read-Modified-Write Sequence (Locked transfers) ... 90

7.4: External Access to Scratchpad Memory.. 93
7.5: SPRAM Initialization .. 94
7.6: Using the Same Design for ISPRAM and DSPRAM ... 94
7.7: Multiple SPRAM Regions .. 95
7.8: Implementation Recommendations ... 96

7.8.1: Software-visible Configuration Information .. 96
7.8.2: Region Sizes .. 97
7.8.3: Unique Addresses.. 97
7.8.4: Support ISPRAM Writes... 98
7.8.5: Virtual Aliasing ... 98
7.8.6: SPRAM Parity Support... 98

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 5

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Chapter 8: Clocking, Reset, and Power.. 99
8.1: Clocking... 99

8.1.1: SI_ClkIn Clock.. 99
8.1.2: EJ_TCK Clock.. 100
8.1.3: Handling Clock Insertion Delay .. 100

8.2: AHB Bus Clock .. 101
8.2.1: SI_AHBStb to enable lower AHB Bus Clock Ratio... 101
8.2.2: Waveforms and Timing Requirements for fixed AHB Clock Ratios ... 101
8.2.3: System Static Timing Analysis for AHB Clock Domain .. 103

8.3: Reset and Hardware Initialization.. 103
8.3.1: SI_ColdReset ... 103
8.3.2: SI_Reset .. 103
8.3.3: SI_NMI ... 104
8.3.4: EJ_TRST_N... 104

8.4: Power Management .. 104
8.4.1: Reducing SI_ClkIn Frequency ... 104
8.4.2: Software-Induced Sleep Mode... 104

Chapter 9: Design For Test Features.. 107
9.1: Introduction.. 107
9.2: Scan Test .. 108
9.3: Integrated RAM BIST .. 109

9.3.1: RAM BIST-related Interface Signals .. 109
9.3.2: RAM BIST Signal Waveform for a Memory Test.. 110
9.3.3: Number of Cycles for Memory BIST .. 111

9.4: User-Specific RAM BIST ... 111

Appendix A: References .. 113

Appendix B: Revision History ... 115

6 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

List of Figures

Figure 2.1: Top-level RTL Hierarchy ... 13
Figure 3.1: Read Transfer with no Wait States ... 30
Figure 3.2: Write Transfer with no Wait States ... 30
Figure 3.3: Read Transfer with Two Wait States .. 30
Figure 3.4: Write Transfer with One Wait State .. 31
Figure 3.5: Multiple Transfers ... 31
Figure 3.6: Four-Beat Wrapping Burst of Write Transfer .. 33
Figure 3.7: Four-Beat Wrapping Burst of Read Transfer .. 33
Figure 3.8: Address Changes During a Waited Transfer After an ERROR... 34
Figure 3.9: Error Response Terminates the First Beat of a Read burst.. 34
Figure 3.10: Waited Transfer, IDLE to NONSEQ.. 35
Figure 3.11: Locked Transfer .. 36
Figure 3.12: HMASTLOCK was deasserted by the ERROR response of Read Sequence.................................... 36
Figure 4.1: EIC Interrupt Signals... 41
Figure 5.1: Daisy-Chained TDI-TDO Between JTAG and EJTAG TAP Controllers ... 47
Figure 5.2: Multiplexing Between JTAG and EJTAG TAP Controllers ... 48
Figure 5.3: EJTAG Chip-Level Pin Connection .. 49
Figure 5.4: Reset Circuitry Implementation .. 51
Figure 5.5: cJTAG Interface.. 52
Figure 5.6: Multi-Core Implementation ... 53
Figure 5.7: TC_Valid and TC_Stall Timing ... 55
Figure 6.1: General Transfer Example ... 61
Figure 6.2: Instruction Dispatch Waveforms .. 64
Figure 6.3: To Coprocessor Data Waveforms .. 65
Figure 6.4: From Coprocessor Data Waveforms ... 66
Figure 6.5: Condition Code Check Waveforms .. 67
Figure 6.6: Exception Waveforms .. 69
Figure 6.7: Instruction Killing Waveforms .. 70
Figure 6.8: Use of SI_Sleep for Clock-Gating in the Coprocessor ... 72
Figure 6.9: Clock-Gating of To Data Registers in Coprocessor ... 72
Figure 6.10: Clock Gating of Instruction Registers in Coprocessor ... 73
Figure 7.1: Basic SPRAM Block Diagram... 76
Figure 7.2: Unified I/D SPRAM Block Diagram... 82
Figure 7.3: Single DSPRAM Read.. 84
Figure 7.4: Single Multi-Cycle DSPRAM Read ... 85
Figure 7.5: Single DSPRAM Write .. 86
Figure 7.6: Single Multi-Cycle DSPRAM Write ... 87
Figure 7.7: Combined DSPRAM Tag Read and Data Write ... 88
Figure 7.8: Consecutive DSPRAM Reads .. 89
Figure 7.9: Read-Write-Read.. 90
Figure 7.10: A complete RMW operation.. 91
Figure 7.11: A Store operation followed by an atomic operation in DSPRAM access .. 92
Figure 7.12: RMW Operation does not hit in DSPRAM .. 93
Figure 7.13: External Access to Single-ported SPRAM.. 94
Figure 7.14: Multiple SPRAM Regions ... 95
Figure 7.15: Multiple SPRAM Regions in Separate Arrays... 96
Figure 8.1: SI_AHBStb enables AHB bus clock ratio.. 101

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 7

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 8.2: Waveform for 1:1 Clock Ratio ... 102
Figure 8.3: Waveform for 2:1 Clock Ratio ... 102
Figure 8.4: Waveform for 3:1 Clock Ratio ... 102
Figure 8.5: Waveform for 4:1 Clock Ratio ... 103
Figure 9.1: Timing Diagram of Typical Scan Chain and Capture Operation .. 108
Figure 9.2: RAM BIST I/O Signals Timing ... 110

8 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

List of Tables

Table 2.1: Signal Type Key... 11
Table 2.2: Signal Prefix Key.. 11
Table 2.3: Signal Descriptions for m14k_cpu Level .. 14
Table 2.4: Signals on m14k_top for External Interface to Custom Blocks .. 28
Table 3.1: Transfer Types... 31
Table 3.2: Transfer Size.. 32
Table 3.3: Burst Operation Types ... 32
Table 3.4: Sequence Order for 4-beat wrapping burst of word... 33
Table 3.5: Protection Control .. 35
Table 4.1: Interrupt Signals in Compatibility and Vectored Modes ... 40
Table 4.2: Interrupt Signals in EIC Mode .. 42
Table 6.1: Supported Coprocessor 2 instructions... 58
Table 6.2: Transfers Required for Each Dispatch... 61
Table 6.3: Allowable Interface Latencies from a Coprocessor to the microAptiv UP Core 62
Table 6.4: Interface Latencies from the microAptiv UP Core to a Coprocessor.. 63
Table 7.1: SPRAM Interface Cycle Timing ... 77
Table 7.2: Read and Write Width for SPRAM Arrays.. 80
Table 7.3: Byte Control for DSPRAM Writes... 81
Table 7.4: SPRAM Transaction Types.. 83
Table 7.5: ISPRAM Connection to DSPRAM Ports .. 95
Table 9.1: Core Input Values for Major Operating Modes .. 107
Table 9.2: Fail Signals .. 110

Chapter 1

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 9

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Overview

This document is targeted for the ASIC designer who is integrating a version of the MIPS32® microAptiv™ UP pro-
cessor core into the system ASIC. This document is applicable both to those integrators who are using a hard core and
those who are integrating a soft core.

In addition to this overview chapter, the document contains the following chapters:

• Chapter 2, “Signal Descriptions” on page 11 describes the pins of the core.

• Chapter 3, “AHB-Lite Interface” on page 29 describes the AHB-Lite interface protocol used by the core.

• Chapter 4, “Interrupt Interface” on page 39 describes the signalling in different interrupt modes.

• Chapter 5, “EJTAG Interface” on page 45 discusses the EJTAG interface used by the core, including the optional
EJTAG TAP controller and the trace interface.

• Chapter 6, “Coprocessor Interface” on page 57 describes the Coprocessor 2 interface and protocol used by the
core.

• Chapter 7, “Scratchpad RAM Interface” on page 75 describes the Scratchpad RAM interface that may optionally
be present on the core.

• Chapter 8, “Clocking, Reset, and Power” on page 99 covers issues related to handling the clock insertion delay
of the microAptiv UP core. Additionally, the hardware reset requirements of the core, as well as power manage-
ment techniques, are discussed.

• Chapter 9, “Design For Test Features” on page 107 discusses general DFT features which may be present on the
microAptiv UP core. Details are specific to a particular implementation of the core.

1.1 Environment Variable Setup

Some UNIX paths described in the document refer to MIPS_HOME, MIPS_CORE and MIPS_PROJECT environ-
ment variables. See the “Release Deliverables and Installation” chapter of the System Package & Simulation Flow
User’s Manual [5] for more information on defining required environment variables.

1.1.1 microAptiv UP Deliverables

All of the microAptiv UP deliverables packages include the following:

• Cycle-exact model: An encrypted, cycle-exact version of the RTL model is generated using VMC from Synop-
sys and included in every release. This model is intended mainly for hard-core customers who do not receive the
source RTL, but is available for soft-core customers if desired. The VMC model is also used within the supplied
verification testbench. Use of the cycle-accurate model is currently limited to x86 RedHat Linux platforms.

 Overview

10 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

• Functional simulation: The testbench code is written in Verilog. The simulation environment includes support
for the following Verilog simulators: NC-Verilog from Cadence, VCS from Synopsys, and ModelSim from
Mentor Graphics.

Soft core deliverables packages will also include support for the following

• RTL: The core RTL code is written in Verilog. The simulation environment includes support for the Verilog sim-
ulators listed above. Simulation is supported at both the RTL and gate levels.

• Implementation scripts: synthesis, timing analysis, power analysis, scan insertion, ATPG, equivalence checking,
physical design. The MIPS® Physical Design Guide [1]describes the scripts as well as the tools and versions that
are supported.

No tool requirements are dictated for the back-end EDA tools that may be used to create a physical implementation of
the microAptiv UP core.

1.2 Other Documents

Other documents available from MIPS cover additional aspects of an microAptiv UP core, including the software
view of the core, programming guidelines, and general details about certain sub-interfaces. If these other documents
are referenced within this Integrator’s Guide, they are listed in Appendix A, “References” on page 113.

Chapter 2

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 11

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Signal Descriptions

This chapter describes the signals on a MIPS32 microAptiv UP processor core. Only naming conventions and actual
signal names are listed in this chapter. The specific interface protocols to which each signal adheres are described in
subsequent chapters.

This chapter contains the following sections:

• Section 2.1 “Naming Conventions”

• Section 2.2 “Top-level Hierarchy”

• Section 2.3 “Detailed Signal Descriptions”

2.1 Naming Conventions

The signal direction key for the signal descriptions is shown in Table 2.1 below.

The names of interface signals present on an microAptiv UP core are prefixed with a unique string, according to their
primary function. Table 2.2 defines the prefixes used for microAptiv UP core interface signals.

Table 2.1 Signal Type Key

Type Description

In Input to the core, unless otherwise noted, sampled on the rising edge of the appropriate clock sig-
nal.

Out Output of the core, unless otherwise noted, driven at the rising edge of the appropriate clock sig-
nal.

AIn Asynchronous inputs that are synchronized by the core.

SIn Static input to the core. These signals control configuration options and are normally tied to
either power or ground. They must not change state while SI_ColdReset is deasserted.

SOut Static output from the core. These signals control configuration options in an optional connected
Coprocessor 2. These signals are static and never change state.

Table 2.2 Signal Prefix Key

Prefix Description

H_ Signals directly related to the AHB-Lite interface.

SI_ General system interface signals, which are not part of theAHB-Lite interface.

EJ_ Signals related to the EJTAG interface.

TC_ Signals related to the EJTAG Trace interface.

CP2_ Signals related to the Coprocessor 2 interface.

 Signal Descriptions

12 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Generally, most signals have active-high assertion levels if not otherwise specified in the tables. Signals ending in the
suffix “_N” are active low.

2.2 Top-level Hierarchy

An microAptiv UP processor core has two options for the top-level module when the core is implemented. The
choice of top-level module depends on implementation trade-offs when the core is synthesized or hardened, and the
choice affects the top-level pinout visible when the core is integrated into the chip.

The top-level hierarchy is shown in Figure 2.1. Either module m14k_cpu or module m14k_top can be chosen as
the top-level module at build time. Module m14k_cpu represents the direct processor core. Module m14k_top
encapsulates m14k_cpu as well as some user-definable modules that interact tightly with m14k_cpu and can be
customized by a user.

TheAHB-Lite, system, EJTAG, trace and testability interfaces exist on both the m14k_cpu and m14k_top levels,
with the expectation that any logic interacting with these interfaces lies in system logic above m14k_top. Thes-
cratchpad RAM, Coprocessor 2 and CorExtend interfaces are present on the m14k_cpu level only. These interfaces
are closely coupled to the processor pipeline. Custom logic connected to these interfaces can be combined with the
processor core itself at synthesis time. In this case, synthesis can be performed at the m14k_top level to minimize
the need for defining detailed constraints between the CPU and the custom logic, and to allow synthesis to better opti-
mize the interfaces. External system logic can still interact with the custom blocks via the configurable width to/from
busses shown in Figure 2.1, with no direct changes needed to the m14k_top module RTL.

In some designs, however, the custom logic may not be known when the core is built and will be added later. For this
situation, synthesis at the m14k_cpu level is appropriate. The custom interfaces need to be constrained for their
expected use, but custom logic can be added later.

When integrating a previously hardened microAptiv UP core, consult with the provider of the core to determine
whether it was built with m14k_top or m14k_cpu as the top level.

UDI_ Signals related to the CorExtend user-defined instruction interface (Pro Series™ cores only).

{I,D}SP_ Instruction/Data ScratchPad RAM interfaces

PM_ Performance monitoring signals

gscan/Bist Signals related to design-for-test features, either scan or memory Built-In-Self-Test (BIST).

gmb Signals related to integrated memory BIST.

Table 2.2 Signal Prefix Key (Continued)

Prefix Description

2.3 Detailed Signal Descriptions

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 13

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 2.1 Top-level RTL Hierarchy

2.3 Detailed Signal Descriptions

All core signals at the m14k_cpu level are listed in Table 2.3 below. The following table, Table 2.4, lists the variable
width to/from signals on the m14k_top level that allow external access to internal custom blocks for thescratchpad
RAM, Coprocessor 2 and CorExtend interfaces.

Note that the signals are grouped by logical function, not by expected physical location. All signals, with the excep-
tion of EJ_TRST_N, are active-high signals. EJ_DINT and SI_NMI go through edge-detection logic so that only one
exception is taken each time they are asserted.

m14k_top

custom CorExtend UDI
block

m14k_cpu

CorExtend interface

variable-width
external to/from

interfaces

custom COP2 block

COP2 interface

custom ISPRAM block

I-SPRAM interface

custom DSPRAM block

D-SPRAM interface

System interface

AHB-Lite interface

EJTAG interface

 Signal Descriptions

14 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

2.3.1 Signals at m14k_cpu Level

Table 2.3 describes the signals at the m14k_cpu level of hierarchy.

Table 2.3 Signal Descriptions for m14k_cpu Level

Signal Name Type Description

System Interface: Refer to Chapter 8, “Clocking, Reset, and Power” on page 99 for more details

Clock Signals: Refer to 8.1 “Clocking” on page 99 for more details

SI_ClkIn In Clock input. All inputs and outputs, except a few of the EJTAG signals, are sam-
pled or asserted relative to the rising edge of this signal.

SI_ClkOut Out Reference clock. This free running clock signal provides a reference for
de-skewing any clock insertion delay created by the internal clock buffering in
the core.

Reset Signals: Refer to 8.4 “Power Management” on page 104 for a description of the various types of reset.

SI_BootExcISAMode AIn When set to ‘0’, boot up from MIPS32 mode or, set to ‘1’ to boot in microMIPS
mode

SI_ColdReset AIn Hard/Cold reset signal. Causes a Reset Exception in the core.

SI_NMI AIn Non-maskable Interrupt. An edge detect is used on this signal. When this signal
is sampled asserted (high) one clock after being sampled deasserted, an NMI is
posted to the core.

SI_Reset AIn Soft/Warm reset signal. Causes a SoftReset Exception in the core.

Power Management Signals: See 8.4 “Power Management” on page 104 for more details

SI_ERL Out This signal reflects the state of the ERL bit (2) in the CP0 Status register and
indicates the error level. The core asserts SI_ERL whenever a Reset, Soft Reset,
or NMI exception is taken.

SI_EXL Out This signal reflects the state of the EXL bit (1) in the CP0 Status register and
indicates the exception level. The core asserts SI_EXL whenever any exception
other than a Reset, Soft Reset, NMI, or Debug exception is taken.

SI_NESTERL Out This signal reflects the state of the ERL bit (2) in the CP0 NestedExc register.

SI_NESTEXL Out This signal reflects the state of the EXL bit (1) in the CP0 NestedExc register.

SI_RP Out This signal reflects the state of the RP bit (27) in the CP0 Status register. Soft-
ware can write this bit to indicate that the device can enter a reduced power
mode.

SI_Sleep Out This signal is asserted by the core whenever the WAIT instruction is executed.
The assertion of this signal indicates that the clock has stopped and that the core
is waiting for an interrupt.

Break Status Signals:

SI_Ibs[7:0] Out Reflects state of breakpoint status (BS) field in the Instruction Breakpoint Status
(IBS) register. These bits are set when the corresponding break condition has
matched, for breaks enabled as either a breakpoints or trigger points. If fewer
than 6 instruction breakpoints exist, the unimplemented bits are tied to 0.

SI_Dbs[3:0] Out Reflects state of breakpoint status (BS) field in the Data Breakpoint Status (DBS)
register. These bits are set when the corresponding break condition has matched,
for breaks enabled as either a breakpoints or trigger points. If fewer than 2 data
breakpoints exist, the unimplemented bits are tied to 0.

Interrupt Signals:

2.3 Detailed Signal Descriptions

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 15

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

SI_EICPresent SIn Indicates whether an external interrupt controller is present. Value is visible to
software in the Config3VEIC register field.

SI_EICVector[5:0] In Provides the vector number for an interrupt request in External Interrupt Control-
ler (EIC) mode. (Note: This input decouples the interrupt priority from the vector
offset. For compatibility with earlier Release 2 cores in EIC mode, connect
SI_Int[7:0] and SI_EICVector[5:0] together.)

SI_EISS[3:0] In General purpose register shadow set number to be used when servicing an inter-
rupt in EIC interrupt mode.

SI_IAck Out Interrupt acknowledge indication for use in external interrupt controller mode.
This signal is active for a single SI_ClkIn cycle when an interrupt is taken. When
the processor initiates the interrupt exception, it loads the value of the
SI_Int[7:0] pins into the CauseRIPL field (overlaid with CauseIP9..IP2), and sig-

nals the external interrupt controller to notify it that the current interrupt request
is being serviced. This allows the controller to advance to another pending
higher-priority interrupt, if desired.

SI_Int[7:0] In/AIn Active high Interrupt pins. These signals are driven by external logic and when
asserted indicate an interrupt exception to the core. The interpretation of these
signals depends on the interrupt mode in which the core is operating; the inter-
rupt mode is selected by software.
The SI_Int signals go through synchronization logic and can be asserted asyn-
chronously to SI_ClkIn. In External Interrupt Controller (EIC) mode, however,
the interrupt pins are interpreted as an encoded value, so they must be asserted
synchronously to SI_ClkIn to guarantee that all bits are received by the core in a
particular cycle.
The interrupt pins are level sensitive and should remain asserted until the inter-
rupt has been serviced.
In Release 1 Interrupt Compatibility mode:
• All 8 interrupt pins have the same priority as far as the hardware is concerned.
• Interrupts are non-vectored.
In Vectored Interrupt (VI) mode:
• The SI_Int pins are interpreted as individual hardware interrupt requests.
• Internally, the core prioritizes the hardware interrupts and chooses an interrupt

vector.
In External Interrupt Controller (EIC) mode:
• An external block prioritizes its various interrupt requests and produces a vec-

tor number of the highest priority interrupt to be serviced.
• The vector number is driven on the SI_Int pins, and is treated as an 8-bit

encoded value in the range of 0..255.
• When the core starts the interrupt exception, signaled by the assertion of

SI_IAck, it loads the value of the SI_Int[7:0] pins into the CauseRIPL field

(overlaid with CauseIP9..IP2). The interrupt controller can then signal another

interrupt.

SI_ION[17:1] Out Interrupt Offset Number. Indicates the current interrupt offset number that is
being serviced. The offset number was captured from SI_Offset[17:1] when
SI_Int was asserted to request an interrupt exception. Depending on the configu-
ration of the EIC, SI_ION[17:1] may be updated when SI_IAck is asserted, .

SI_IPL[7:0] Out Current interrupt priority level from the CauseIPL register field, provided for use

by an external interrupt controller. This value is updated whenever SI_IAck is
asserted.

Table 2.3 Signal Descriptions for m14k_cpu Level (Continued)

Signal Name Type Description

 Signal Descriptions

16 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

SI_IPTI[2:0] SIn This input indicates which IP number the timer interrupt is combined with in the
core. The value of this bus is visible to software in the IntCtlIPTI register field.

SI_IVN[5:0] Out Interrupt Vector Number is to indicate the current interrupt vector number that is
being serviced. This vector number was captured from SI_EICVector[5:0] when
SI_Int is asserted to request for an interrupt exception. Depends on the EIC con-
figuration, SI_IVN[5:0] is updated when SI_IAck is asserted.

SI_NMITaken Out NMI Taken reflects the value of CP0 register STATUS.NMITaken.

SI_Offset[17:1] In Offset for interrupt vector

SI_SWInt[1:0] Out Software interrupt request. These signals represent the value in the IP[1:0] field
of the Cause register. They are provided for use by an external interrupt control-
ler.

SI_TimerInt Out Timer interrupt indication. This signal is asserted whenever the Count and
Compare registers match and is deasserted when the Compare register is writ-
ten. This hardware pin represents the value of the CauseTI register field.

For Release 1 Interrupt Compatibility mode or Vectored Interrupt mode:
Traditionally, SI_TimerInt is fed back into the core through one of the interrupt
pins. However, this is no longer needed, as the core will internally route the inter-
rupt to the IP number set by the IntCtl.IPTI field.

For External Interrupt Controller (EIC) mode:
The SI_TimerInt signal is provided to the external interrupt controller, which
then prioritizes the timer interrupt with all other interrupt sources, as desired. The
controller then encodes the desired interrupt value on the SI_Int pins. Since
SI_Int is usually encoded, the SI_IPTI pins are not meaningful in EIC mode.

Configuration Inputs/Outputs:

SI_CPUNum[9:0] SIn Unique identifier to specify an individual core in a multi-processor system. The
hardware value specified on these pins is available in the EBaseCPUNum register

field, so it can be used by software to distinguish a particular processor. In a sin-
gle processor system, this value should be set to zero.

SI_Endian SIn Indicates the base endianness of the core. Value is visible to software in the
Config0BE register field.

Table 2.3 Signal Descriptions for m14k_cpu Level (Continued)

Signal Name Type Description

SI_IPTI Combined w/ SI_Int

0-1 None

2 SI_Int[0]

3 SI_Int[1]

4 SI_Int[2]

5 SI_int[3]

6 SI_Int[4]

7 SI_Int[5]

SI_Endian Base Endian Mode

0 Little Endian

1 Big Endian

2.3 Detailed Signal Descriptions

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 17

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

SI_MergeMode[1:0] SIn The state of these signals determines whether merging is allowed in the 16-byte
collapsing write buffer. Value of SI_MergeMode[0] is visible to software in the
Config0MM register field.

SI_SRSDisable[3:0] SIn Disable use of some shadow register sets.

SI_TraceDisable SIn Set to ‘1’ to disable the trace hardware.

Fast Debug Channel:

SI_IPFDCI[2:0] In This input indicates which IP number the FDC interrupt is combined with inter-
nally in the core.

SI_FDCInt Out FDC interrupt indication. This signal indicates RX FIFO full or TX FIFO or
probe interrupt. Probe interrupt only enabled when RX int is available.
For External Interrupt Controller (EIC) mode:
The SI_FDCInt signal is provided to the external interrupt controller, which then
prioritizes the FDC interrupt with all other interrupt sources, as desired. The con-
troller then encodes the desired interrupt value on the SI_Int pins. Since SI_Int is
usually encoded, the SI_IPFDCI pins are not meaningful in EIC mode.

Performance Counters:

SI_IPPCI[2:0] In This input indicates which IP number the PCI interrupt is combined with inter-
nally in the core.

SI_PCInt Out PC interrupt indication.
For External Interrupt Controller (EIC) mode:
The SI_PCInt signal is provided to the external interrupt controller, which then
prioritizes the performance counter interrupt with all other interrupt sources, as
desired. The controller then encodes the desired interrupt value on the SI_Int
pins. Since SI_Int is usually encoded, the SI_IPPCI pins are not meaningful in
EIC mode.

AHB-Lite Interface Refer to Chapter 3, “AHB-Lite Interface” on page 29 for more details.

HADDR[31:0] Out The 32-bit system address bus

HBURST[2:0] Out The burst type indicates if the transfer is a single transfer or forms part of a burst.
Fixed length bursts of 4, 8, and 16 beats are spec’ed but not all are supported.
The burst can be incrementing or wrapping. Only Single or WRAP4 are sup-
ported in the microAptiv UP core.

Table 2.3 Signal Descriptions for m14k_cpu Level (Continued)

Signal Name Type Description

SI_MergeMode[1:0] Merge Mode

002 No Merge

012 Reserved

102 Full Merge

112 Reserved

SI_SRSDisable[3:0] Register Sets

0000 Use all register sets

1000 Use 8 register sets

1100 Use 4 register sets

1110 Use 2 register sets

1111 Use 1 register set

 Signal Descriptions

18 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

HCLK Out The bus clock times all bus transfers. All signal timings are related to the rising
edge of HCLK. It is a reference clock from the gated main clock SI_ClkIn.

HMASTLOCK Out When HIGH, this signal indicates that the current transfer is part of a locked
sequence. It has the same timing as the address and control signals. In the
microAptiv UP core when atomic instruction access uncached space through
AHB-Lite, assert HMASTLOCK until the atomic write transaction is broadcast
on the AHB-Lite bus. Typically the locked transfer is used to maintain the integ-
rity of a semaphore.

HPROT[3:0] Out The protection control signals provide additional information about a bus access
and are primarily intended for use by any module that wants to implement some
level of protection.
HPROT[3:1] is set default to b001 because the microAptiv UP core can not pro-
vide the accuracy of all protection information. But HPROT[0] is used to distin-
guish between Opcode fetch and Data access. HPROT=4’b0010 for instruction
fetches; 4’b0011 for data loads and stores

HRDATA[31:0] In Read Data

HREADY In When HIGH, the HREADY signal indicates that a transfer has finished on the
bus. This signal can be driven LOW to extend a transfer.

HRESETn Out The bus reset signal is active LOW and resets the system and the bus. This is the
only active LOW AHB-Lite signal.

HRESP In The transfer response. When LOW, the HRESP signal indicates that the transfer
status is OKAY. When HIGH, the HRESP signal indicates that the transfer status
is ERROR.

HSIZE[2:0] Out Indicates the size of the transfer, that is typically byte, halfword, or word. The
protocol allows for larger transfer sizes up to a maximum of 1024 bits.

HTRANS[1:0] Out Indicates the transfer type of the current transfer. This can be:
• IDLE
• BUSY—Not implemented in M14Kc
• NONSEQUENTIAL
• SEQUENTIAL

HWDATA[31:0] Out The write data bus transfers data from the master to the slaves during write oper-
ations.

HWRITE Out Indicates the transfer direction. When HIGH this signal indicates a write transfer
and when LOW a read transfer.

SI_AHBStb In Enable AHB input and output interface signals to be registered and to suppress
HCLK high pulses so that the AHB bus can run at a lower clock ratio than the
CPU core clock. This signal is registered by the core prior to use.

CorExtend™ Interface: On Pro Series™ cores, there is an interface to an external CorExtend user-defined instruction block.
Refer to the MIPS32® Pro Series™ CorExtend™ Instruction Integrator’s Guide [12] for more details on these signals.

EJTAG Interface: Refer to Chapter 5, “EJTAG Interface” on page 45 for more details.

TAP Interface. These signals comprise the EJTAG Test Access Port. These signals will not be connected if the core does not
implement the TAP controller.

EJ_TRST_N In Active low Test Reset Input (TRST*) for the EJTAG TAP. EJ_TRST_N must
be asserted at power-up to cause the TAP controller to be reset.

EJ_TCK In Test Clock Input (TCK) for the EJTAG TAP.

EJ_TMS In Test Mode Select Input (TMS) for the EJTAG TAP.

Table 2.3 Signal Descriptions for m14k_cpu Level (Continued)

Signal Name Type Description

2.3 Detailed Signal Descriptions

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 19

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

EJ_TDI In Test Data Input (TDI) for the EJTAG TAP.

EJ_TDO Out Test Data Output (TDO) for the EJTAG TAP.
Driven on the negative edge of EJ_TCK.

EJ_TDOzstate Out Drive indication for the output of TDO for the EJTAG TAP at chip level:
1: The TDO output at chip level must be in Z-state
0: The TDO output at chip level must be driven to the value of EJ_TDO.
IEEE Standard 1149.1-1990 defines TDO as a 3-stated signal. To avoid having a
3-state core output, the microAptiv UP core outputs this signal to drive an exter-
nal 3-state buffer.
Driven on the negative edge of EJ_TCK.

Debug Interrupt:

EJ_DINTsup SIn Value of DINTsup for the Implementation register. A 1 on this signal indicates
that the EJTAG probe can use DINT signal to interrupt the processor. This signal
should be asserted if the DINT pin on the EJTAG probe header is connected to
the EJ_DINT input of the core.

EJ_DINT In Debug exception request when this signal is asserted in a CPU clock period after
being deasserted in the previous CPU clock period. The request is cleared when
debug mode is entered. Requests when in debug mode are ignored.

EJ_ECREjtagBrk Out Output the current state of the ECREjtagBrk bit. The probe can set this bit to
cause a debug exception. For systems that may shut down the main core clock in
sleep mode, this signal allow the clocks to be restarted so the debugger initiated
exception can be taken.
Driven on the negative edge of EJ_TCK.

Debug Mode Control / Indication

EJ_DisableProbeDebug In Must be held constant during all operation modes of the core. When asserted:
• ProbEn=0
• ProbTrap=0
• EJTagBrk is disabled
• EJTAGBOOT is disabled
• PC/DA Sampling is disabled

EJ_DebugM Out Asserted when the core is in Debug Mode. This can be used to bring the core out
of a low power mode (see 8.4 “Power Management” on page 104 for more
details). In systems with multiple processor cores, this signal can be used to syn-
chronize the cores when debugging.

Device ID Bits: These inputs provide an identifying number visible to the EJTAG probe. If the EJTAG TAP controller is not
implemented, then these inputs are not connected. These inputs are always available for soft core customers. On hard cores, the
core “hardener” may set these inputs to their own values.

EJ_ManufID[10:0] SIn Value of the Device IDManufID register field. As per IEEE 1149.1-1990 section

11.2, the manufacturer identity code shall be a compressed form of JEDEC stan-
dard manufacturer’s identification code in the JEDEC Publications106, which
can be found at: http://www.jedec.org/
ManufID[6:0] bits are derived from the last byte of the JEDEC code by discard-
ing the parity bit. ManufID[10:7] bits provide a binary count of the number of
bytes in the JEDEC code that contain the continuation character (0x7F). Where
the number of continuations characters exceeds 15, these 4 bits contain the mod-
ulo-16 count of the number of continuation characters.

EJ_PartNumber[15:0] SIn Value of the Device IDPartNumber register field.

EJ_Version[3:0] SIn Value of the Device IDVersion register field.

Table 2.3 Signal Descriptions for m14k_cpu Level (Continued)

Signal Name Type Description

 Signal Descriptions

20 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

System Implementation Dependent Outputs: These signals come from EJTAG control registers. They have no effect on the
core, but can be used to give EJTAG debugging software additional control over the system.

EJ_SRstE Out Soft Reset Enable. EJTAG can deassert this signal if it wants to mask soft resets.
If this signal is deasserted, none, some, or all soft reset sources are masked.

EJ_PerRst Out Peripheral Reset. EJTAG can assert this signal to request the reset of some or all
of the peripheral devices in the system.

EJ_PrRst Out Processor Reset. EJTAG can assert this signal to request that the core be reset.
This can be fed into the SI_Reset signal

TCtrace Interface: These signals are connected to the Trace Capture Block (TCB) inside the core. All of the following pins will
normally be connected to an on-chip Probe Interface Block (PIB). The PIB is placed close to the physical probe pins, and will
handle the final off-chip transmission on the trace port.

TC_Valid Out Asserted when a new trace word is started on the TC_Data[63:0] signals.

TC_ClockRatio[2:0] Out Clock ratio. The table below shows the encoded values for clock ratio.
With the iFlowtrace mechanism, the clock ratio is set via the OfClk bit in the
ITCB control/status register and the only possible values are 100 and 101.

TC_Data[63:0] Out Trace word data. With the iFlowtrace mechanism, the 64b data value is held con-
stant until it is acknowledged by the deassertion of TC_Stall.

TC_Stall In Stall request. In the iFlowtrace scheme, the deassertion of this signal acknowl-
edges that the previous value on TC_Data has been entirely consumed and the
next value can be presented.

TC_PibPresent SIn Must be asserted when a PIB is attached to the TC Interface. When de-asserted
(low) all the other inputs are disregarded.

Coprocessor 2 Interface: Refer to Chapter 6, “Coprocessor Interface” on page 57 for more details.

Instruction Dispatch: These signals are used to transfer an instruction for the microAptiv UP core to the COP2 coprocessor.

CP2_ir_0[31:0] Out Coprocessor Arithmetic and To/From Instruction Word: Valid in the cycle
before CP2_as_0, CP2_ts_0 or CP2_fs_0 is asserted.

CP2_irenable_0 Out Enable Instruction Registering: When deasserted, no instruction strobes will
be asserted in the following cycle. When asserted, there may be an instruction
strobe asserted in the following cycle. Instruction strobes include CP2_as_0,
CP2_ts_0, CP2_fs_0.
Note: This is the only late signal in the interface. The intended function is to use
this signal as a clock gater on the capture latches in the coprocessor for
CP2_ir_0[31:0].

Table 2.3 Signal Descriptions for m14k_cpu Level (Continued)

Signal Name Type Description

TC_ClockRatio Clock Ratio

000 8:1 (Trace clock is eight times the core clock)

001 4:1 (Trace clock is four times the core clock)

010 2:1 (Trace clock is double the core clock)

011 1:1 (Trace clock is same as the core clock)

100 1:2 (Trace clock is one half the core clock)

101 1:4 (Trace clock is one fourth the core clock)

110 1:6 (Trace clock is one sixth the core clock)

111 1:8 (Trace clock is one eighth the core clock)

2.3 Detailed Signal Descriptions

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 21

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

CP2_as_0 Out Coprocessor 2 Arithmetic Instruction Strobe: Asserted in the cycle after an
arithmetic Coprocessor 2 instruction is available on CP2_ir_0[31:0]. If
CP2_abusy_0 was asserted in the previous cycle, this signal may not be
asserted. This signal must never be asserted in the same cycle that CP2_ts_0 or
CP2_fs_0 is asserted.

CP2_abusy_0 In Coprocessor 2 Arithmetic Busy: When asserted, a Coprocessor2 arithmetic
instruction may not be dispatched. CP2_as_0 can not be asserted in the cycle
after this signal is asserted.

CP2_ts_0 Out Coprocessor 2 To Strobe: Asserted in the cycle after a To COP2 Op instruction
is available on CP2_ir_0[31:0]. If CP2_tbusy was asserted in the previous
cycle, this signal will not be asserted. This signal can never be asserted in the
same cycle that CP2_as_0 or CP2_fs_0 is asserted.

CP2_tbusy_0 In To Coprocessor 2 Busy: When asserted, a To COP2 Op must not be dispatched.
CP2_ts_0 may not be asserted in the cycle after this signal is asserted.

CP2_fs_0 Out Coprocessor 2 From Strobe: Asserted in the cycle after a From COP2 Op
instruction is available on CP2_ir_0[31:0]. If CP2_fbusy_0 was asserted in the
previous cycle, this signal must not be asserted. This signal may never be
asserted in the same cycle that CP2_as_0 or CP2_ts_0 is asserted.

CP2_fbusy_0 In From Coprocessor 2 Busy: When asserted, a From COP2 Op may not be dis-
patched. CP2_fs_0 may not be asserted in the cycle after this signal is asserted.

CP2_endian_0 Out Big Endian Byte Ordering: When asserted, the processor is using big endian
byte ordering for the dispatched instruction. When deasserted, the processor is
using little-endian byte ordering. Valid the cycle before CP2_as_0, CP2_fs_0
or CP2_ts_0 is asserted.

CP2_inst32_0 SOut MIPS32 Compatibility Mode - Instructions: When asserted, the dispatched
instruction is restricted to the MIPS32 subset of instructions. Please refer to the
MIPS64™ architecture specification for a complete description of MIPS32 com-
patibility mode. Valid the cycle before CP2_as_0, CP2_fs_0 or CP2_ts_0 is
asserted.
Note: The microAptiv UP core is a MIPS32 core, and will only issue MIPS32
instructions. Thus CP2_inst32_0 is tied high.

CP2_kd_mode_0 Out Kernel/Debug Mode: When asserted, the processor is in kernel or debug mode.
Valid the cycle before CP2_as_0, CP2_fs_0 or CP2_ts_0 is asserted.

To Coprocessor Data: These signals are used when data is sent from the microAptiv UP core to the COP2 coprocessor, as part
of completing a To Coprocessor instruction.

CP2_tds_0 Out Coprocessor To Data Strobe: Asserted when To COP Op data is available on
CP2_tdata_0[31:0].

Table 2.3 Signal Descriptions for m14k_cpu Level (Continued)

Signal Name Type Description

 Signal Descriptions

22 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

CP2_torder_0[2:0] SOut Coprocessor To Order: Specifies which outstanding To COP Op the data is for.
Valid only when CP2_tds_0 is asserted.

Note: The microAptiv UP core can never send Data Out-of-Order, thus
CP2_torder_0[2:0] is forced to 0002.

CP2_tordlim_0[2:0] SIn To Coprocessor Data Out-of-Order Limit: This signal forces the integer pro-
cessor core to limit how much it can reorder To COP Data. The value on this sig-
nal corresponds to the maximum allowed value to be used on
CP2_torder_0[2:0].
Note: The microAptiv UP core will never send Data Out-of-Order, thus
CP2_tordlim_0[2:0] is ignored.

CP2_tdata_0[31:0] Out To Coprocessor Data: Data to be transferred to the coprocessor. Valid when
CP2_tds_0 is asserted.

From Coprocessor Data: These signals are used when data is sent to the microAptiv UP core from the COP2 coprocessor, as
part of completing a From Coprocessor instruction.

CP2_fds_0 In Coprocessor From Data Strobe: Asserted when From COP Op data is available
on CP2_fdata_0[31:0].

CP2_forder_0[2:0] In Coprocessor From Order: Specifies which outstanding From COP Op the data
is for. Valid only when CP2_fds_0 is asserted.

Note: Only values 0002 and 0012 are allowed; see the CP2_fordlim_0[2:0]
description below.

Table 2.3 Signal Descriptions for m14k_cpu Level (Continued)

Signal Name Type Description

CP2_torder_0[2:0] Order

0002 Oldest outstanding To COP Op data transfer

0012 2nd oldest To COP Op data transfer.

0102 3rd oldest To COP Op data transfer.

0112 4th oldest To COP Op data transfer.

1002 5th oldest To COP Op data transfer.

1012 6th oldest To COP Op data transfer.

1102 7th oldest To COP Op data transfer.

1112 8th oldest To COP Op data transfer.

CP2_forder_0[2:0] Order

0002 Oldest outstanding From COP Op data transfer

0012 2nd oldest From COP Op data transfer.

0102 3rd oldest From COP Op data transfer.

0112 4th oldest From COP Op data transfer.

1002 5th oldest From COP Op data transfer.

1012 6th oldest From COP Op data transfer.

1102 7th oldest From COP Op data transfer.

1112 8th oldest From COP Op data transfer.

2.3 Detailed Signal Descriptions

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 23

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

CP2_fordlim_0[2:0] SOut From Coprocessor Data Out-of-Order Limit: This signal sets the limit on how
much the coprocessor can reorder From COP Data. The value on this signal cor-
responds to the maximum allowed value to be used on CP2_forder_0[2:0].
Note: The microAptiv UP core can handle one Out-of-Order From Data transfer.
CP2_fordlim_0[2:0] is forced to 0012. The core can also never have more than

two outstanding From COP instructions issued, which also automatically limits
CP2_forder_0[2:0] to 0012.

CP2_fdata_0[31:0] In From Coprocessor Data: Data to be transferred from the coprocessor. Valid
when CP2_fds_0 is asserted.

Coprocessor Condition Code Check: These signals are used to report the result of a condition code check to the microAptiv UP
core from the COP2. This is only used for BC2 instructions.

CP2_cccs_0 In Coprocessor Condition Code Check Strobe: Asserted when coprocessor con-
dition code check bits are available on CP2_ccc_0.

CP2_ccc_0 In Coprocessor Conditions Code Check: Valid when CP2_cccs_0 is asserted.
When asserted, the branch instruction checking the condition code should take
the branch. When deasserted, the branch instruction should not branch.

Coprocessor Exceptions: These signals are used by the COP2 to report exception for each instruction.

CP2_excs_0 In Coprocessor Exception Strobe: Asserted when coprocessor exception signal-
ling is available on CP2_exc_0 and CP2_exccode_0.

CP2_exc_0 In Coprocessor Exception: When asserted, a Coprocessor exception is signaled on
CP2_exccode_0[4:0]. Valid when CP2_excs_0 is asserted.

CP2_exccode_0[4:0] In Coprocessor Exception Code: Valid when both CP2_excs_0 and CP2_exc_0
are asserted.

Instruction Nullification: These signals are used by the microAptiv UP core to signal nullification of each instruction to the
COP2 coprocessor.

CP2_nulls_0 Out Coprocessor Null Strobe: Asserted when a nullification signal is available on
CP2_null_0.

CP2_null_0 Out Nullify Coprocessor Instruction: When deasserted, the microAptiv UP core is
signalling that the instruction is not nullified. When asserted, the microAptiv UP
core is signalling that the instruction is nullified, and no further transactions will
take place for this instruction. Valid when CP2_nulls_0 is asserted.

Instruction Killing: These signals are used by the microAptiv UP core to signal killing of each instruction to the COP2 copro-
cessor.

CP2_kills_0 Out Coprocessor Kill Strobe: Asserted when kill signalling is available on
CP2_kill_0[1:0].

Table 2.3 Signal Descriptions for m14k_cpu Level (Continued)

Signal Name Type Description

CP2_exccode[4:0] Exception

010102 (RI) Reserved Instruction Exception

100002 (IS1) Available for Coprocessor specific Exception

100012 (IS1) Available for Coprocessor specific Exception

100102 C2E Exception

All others Reserved

 Signal Descriptions

24 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

CP2_kill_0[1:0] Out Kill Coprocessor Instruction: Valid when CP2_kills_0 is asserted.

If an instruction is killed, no further transactions will take place on the interface
for this instruction.

Miscellaneous COP2 signals:

CP2_reset Out Coprocessor Reset: Asserted when a hard or soft reset is performed by the inte-
ger unit.

CP2_present SIn COP2 Present: Must be asserted when COP2 hardware is connected to the
Coprocessor 2 Interface.

CP2_idle In Coprocessor Idle: Asserted when the coprocessor logic is idle. Enables the pro-
cessor to go into sleep mode and shut down the clock. Valid only if
CP2_present is asserted.

CorExtend UDI Interface: These signals can be used to interface between CorExtend Block and the core. Refer to
MD00324 “MIPS Pro Series CorExtend Instruction Integrator’s Guide” for more details.

UDI_ir_e[31:0] Out This is the complete instruction word. Although the module also gets rs and rt
source operands, the full instruction is provided so all or part of the source regis-
ter fields may be used to hold immediate values. Note that the implementer is
responsible for decoding the Opcode and Function fields.

UDI_irvalid_e Out Indicates whether the value of the instruction word (UDI_ir_e) is valid or not.

UDI_rs_e[31:0] Out Source operand rs after the bypass mux.

UDI_rt_e[31:0] Out Source operand rt after the bypass mux.

UDI_endianb_e Out Indicates that this instruction is executing in Big Endian mode. This signal is
generally not needed unless a) the UDI instruction works on sub-word data that is
endian dependent, and b) the UDI block is designed to be bi-endian

UDI_kd_mode_e Out Indicates that the instruction is executing in kernel or debug mode. This can be
used to prevent certain UDI instructions from being executed in user mode.

UDI_kill_m Out Late arriving kill signal due to an exception generated by an earlier instruction.
This signal may optionally be used to deassert the UDI_stall_m output for
improved interrupt latency on multi-cycle UDIs whose results won’t be used.

UDI_start_e Out This is the mpc_run_ie signal coming from the core pipeline control logic.

UDI_run_m Out This is the mpc_run_m signal used to qualify UDI_kill_m.

UDI_greset Out Reset signal to be used to reset any state machines.

UDI_gclk Out Clock input.

UDI_gscanenable Out Global scan enable.

Table 2.3 Signal Descriptions for m14k_cpu Level (Continued)

Signal Name Type Description

CP2_kill_0[1:0] Type of Kill

002 Instruction is not killed and results can be com-
mitted.012

102 Instruction is killed. (not due to CP2_exc_0)

112 Instruction is killed. (due to CP2_exc_0)

2.3 Detailed Signal Descriptions

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 25

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

UDI_ri_e In A one-bit signal which when high indicates that the SPECIAL2 instruction cur-
rently being executed is illegal (i.e., reserved). This signal is used by the Master
Pipeline Control (MPC) block within the core to signal an illegal instruction,
however, this signal is sampled by MPC only if the current instruction is within
the SPECIAL2 range of user-defined instructions (bits [5:4] of the instruction are
2’b01).

UDI_rd_m[31:0] In The 32-bit result of the executed instruction available in the M stage.

UDI_wrreg_e[4:0] In Register to write the result from the execution of this user-defined instruction.
This value is also passed on to mpc.

UDI_stall_m In Signals that the UDI block is processing a multicycle instruction and needs to
stall the pipeline since the outputs need to be written into the register file. Should
be set to 0 for single cycle instructions. This is an M stage signal.

UDI_present In Static signal that denotes whether any UDI support is available.

UDI_honor_cee In Indicates whether the core should honor the CorExtend Enable (CEE) bit con-
tained in the Status register. When this signal is asserted, Status.CEE is deas-
serted, and a UDI operation is attempted, the core will take a CorExtend
Unusable Exception.

ScratchPad RAM interface: This interface allows a ScratchPad RAM (SPRAM) array to be connected in parallel with the
cache arrays, enabling fast access to data. There are independent interfaces for Instruction and Data ScratchPads. Note: In order
to achieve single cycle access, the ScratchPad interface is not registered, unlike the other core interfaces. This requires more
careful timing considerations. Refer to Chapter 7, “Scratchpad RAM Interface” on page 75 for further details.

DSP_TagAddr[19:2] Out Virtual index into the SPRAM used for tag reads and writes.

DSP_TagRdStr Out Tag Read Strobe - Hit, Stall, TagRdValue use this strobe.

DSP_TagWrStr Out Tag Write Strobe - If SPRAM tag is software configurable, this signal will indi-
cate when to update the tag value.

DSP_TagCmpValue[23:0] Out Tag Compare Value - This bus is used for both tag comparison and tag write
value.
For tag comparison, the bus usage is {PA[31:10], 2’b0} and contains the address
to determine hit/miss.
For tag writes, the bus contains {PA[31:10], Lock, Valid} from the TagLo regis-
ter.

DSP_DataAddr[19:2] Out Virtual index into the SPRAM used for data reads and writes.

DSP_DataWrValue[31:0] Out Data Write Value - Data value to be written to the data array.

DSP_DataRdStr Out Data Read Strobe - Indicates that the data array should be read.

DSP_DataWrStr Out Data Write Strobe - Indicates that the data array should be written.

DSP_DataWrMask[3:0] Out Data Write Mask - Byte enables for a data write.

DSP_Lock Out Indicates a lock access of a RMW sequence caused by an atomic instruction
accessing DSPRAM.

DSP_ParityEn Out Indicate Parity is enabled, based on the value of the ErrCtl.PE (CP0) bit.

DSP_WPar[3:0] Out Parity Bits for Write operation. Only valid when parity is implemented.

DSP_DataRdValue[31:0] In Data Read Value - Data value read from the data array.

DSP_TagRdValue[23:0] In Tag Read Value - Tag value read from the tag array. Written to TagLo register
on a CACHE instruction. Read value maps into these TagLo fields: {PA[31:10],
Lock, Valid}

Table 2.3 Signal Descriptions for m14k_cpu Level (Continued)

Signal Name Type Description

 Signal Descriptions

26 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

DSP_Hit In Hit - Indicates that this read was to an address covered by the SPRAM.

DSP_Stall In Stall - Indicates that the read has not yet completed.

DSP_ParPresent In Indicate that Parity is present

DSP_RPar[3:0] In Read Parity bits. Ignored when parity is not implemented.

DSP_Present SIn Present - Indicates that a SPRAM array is connected to this port.

ISP_Addr[19:2] Out Virtual index into the SPRAM used for both reads and writes of tag and data.

ISP_RdStr Out Read Strobe - indicates a read of the tag and data arrays. Hit and Stall signals are
also based off of this strobe.

ISP_TagWrStr Out Tag Write Strobe - If SPRAM tag is software configurable, this signal will indi-
cate when to update the tag value.

ISP_DataTagValue[31:0] Out Write/Compare Data. This is the value to be written to the data array.

ISP_DataWrStr Out Data Write Strobe - Indicates that the data array should be written.

ISP_ParityEn Out Indicate Parity is enabled, based on the value of the ErrCtl.PE (CP0) bit.

ISP_WPar[3:0] Out Parity Bits for Write operation. Only valid when parity is implemented.

ISP_DataRdValue[31:0] In Data Read Value - Data value read from the data array.

ISP_TagRdValue[23:0] In Tag Read Value - Tag value read from the tag array. Written to TagLo register
on a CACHE instruction. Read value maps into these TagLo fields: {PA[31:10],
Lock, Valid}

ISP_Hit In Hit - Indicates that this read was to an address covered by the SPRAM.

ISP_Stall In Stall - Indicates that the read has not yet completed.

ISP_ParPresent In Indicates that Parity is present.

ISP_RPar[3:0] In Read Parity bits. Ignored when parity is not implemented.

ISP_Present SIn Present - Indicates that a SPRAM array is connected to this port.

Performance Monitoring Interface: These signals can be used to implement performance counters, which can be used to
monitor hardware/software performance.

PM_InstnComplete Out This signal is asserted each time an instruction completes in the pipeline.

Scan Test Interface: These signals provide the interface for testing the core. The use and configuration of these pins are imple-
mentation-dependent.

gscanenable In This signal should be asserted while scanning vectors into or out of the core. The
gscanenable signal must be deasserted during normal operation and during cap-
ture clocks in test mode.

gscanmode In This signal should be asserted during all scan testing both while scanning and
during capture clocks. The gscanmode signal must be deasserted during normal
operation.

gscanramwr In This signal will optionally provide direct control over the read and write strobes
of the RAM arrays in the core. This control will only occur if gscanmode is also
asserted, and if this feature was selected when the core was built. gscanramwr is
recommended to be held low during normal (non-scan) operation.

gscanin[x:0] In This signal is input to a scan chain. (x may be an integer greater than or equal to
0.)

gscanout[x:0] Out This signal is output from a scan chain. (x may be an integer greater than or equal
to 0.)

Table 2.3 Signal Descriptions for m14k_cpu Level (Continued)

Signal Name Type Description

2.3 Detailed Signal Descriptions

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 27

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

2.3.2 External Interface Signals on m14k_top Level to Custom Blocks

Table 2.4 lists external interface signals on m14k_top that allow external system access to custom blocks that may
reside inside m14k_top.

Note that Table 2.4 does not contain the complete signal list for the m14k_top level. Rather, the fullscratchpad
RAM, Coprocessor 2 and CorExtend interfaces, described in Table 2.3, are replaced with variable-width to/from bus-
ses that allow external access to the custom blocks that may reside inside m14k_top. The width of these signals is

BistIn[n:0] In Input to the user-specified BIST controller

BistOut[n:0] Out Output from the user-specified BIST controller

Integrated Memory BIST Interface: These signals provide an interface to integrated memory BIST features present within
the core for testing the internal cache SRAM arrays. Refer to Chapter 9, “Design For Test Features” on page 107 for more
details about the use of this interface.

gmb_dc_algorithm[7:0] In Algorithm selection for I$ BIST controller. gmb_dc_algorithm[0]=1 means
IFA13; gmb_dc_algorithm[0]=0 means March C+; gmb_dc_algorithm[5:1] :
IFA13 retention delay.

gmb_ic_algorithm[7:0] In Algorithm selection for I$ BIST controller. gmb_ic_algorithm[0]=1 means
IFA13; gmb_ic_algorithm[0]=0 means March C+; gmb_ic_algorithm[5:1]:
IFA13 retention delay.

gmb_isp_algorithm[7:0] In Algorithm selection for ISPRAM BIST controller. gmb_isp_algorithm[0]=1
means IFA13; gmb_isp_algorithm[0]=0 means March C+;
gmb_isp_algorithm[5:1] : IFA13 retention delay.

gmb_sp_algorithm[7:0] In Algorithm selection for DSPRAM BIST controller. gmb_sp_algorithm[0]=1
means IFA13; gmb_sp_algorithm[0]=0 means March C+;
gmb_sp_algorithm[5:1] : IFA13 retention delay.

gmbinvoke In Enable signal for integrated BIST controllers.

gmbdone Out Common completion indicator for all integrated BIST sequences.

gmbddfail Out When high, indicates that the integrated BIST test failed on the data cache data
array.

gmbispfail Out When high, indicates that the integrated BIST test failed on the ISPRAM array.

gmbspfail Out When high, indicates that the integrated BIST test failed on the DSPRAM array.

gmbtdfail Out When high, indicates that the integrated BIST test failed on the data cache tag
array.

gmbwdfail Out When high, indicates that the integrated BIST test failed on the data cache way
select array.

gmbdifail Out When high, indicates that the integrated BIST test failed on the instruction cache
data array.

gmbtifail Out When high, indicates that the integrated BIST test failed on the instruction cache
tag array.

gmbwifail Out When high, indicates that the integrated BIST test failed on the instruction cache
way select array.

Table 2.3 Signal Descriptions for m14k_cpu Level (Continued)

Signal Name Type Description

 Signal Descriptions

28 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

configured by the user when the m14k_top block is built. All other interfaces described in Table 2.3 are simply
propagated from m14k_cpu and also reside on the m14k_top level.

Table 2.4 Signals on m14k_top for External Interface to Custom Blocks

Signal Name Type Description

CorExtend™ External Interface:

UDI_toudi[x-1:0] In Variable-width external input to a custom CorExtend block.

UDI_fromudi[x-1:0] Out Variable-width external output from a custom CorExtend block.

Coprocessor 2 External Interface:

CP2_tocp2[x-1:0] In Variable-width external input to a custom coprocessor 2 block.

CP2_fromcp2[x-1:0] Out Variable-width external output from a custom coprocessor 2 block.

ScratchPad RAM External Interface:

ISP_toisp[x-1:0] In Variable-width external input to a custom instruction SPRAM block.

ISP_fromisp[x-1:0] Out Variable-width external output from a custom instruction SPRAM block.

DSP_todsp[x-1:0] In Variable-width external input to a custom data SPRAM block.

DSP_fromdsp[x-1:0] Out Variable-width external output from a custom data SPRAM block.

Chapter 3

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 29

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

AHB-Lite Interface

This chapter describes the AHB-Lite™ interface, which is present on the MIPS32® microAptiv™ UP processor core.
The AHB-Lite interface is generally described in AMBA 3 AHB-Lite Protocol. The rest of this chapter discusses the
specific microAptiv UP implementation of the AHB-Lite interface.

This chapter contains the following major sections:

• Section 3.1, "Interface Transactions"

• Section 3.2, "Clock Ratios"

• Section 3.3, "Write Buffer"

• Section 3.4, "Merging Control"

3.1 Interface Transactions

The microAptiv UP implement 32-bit unidirectional address and data buses: HADDR[31:0] for address, HRData[31:0]
for read operations, and HWData[31:0] for write operations. All single timings are related to the rising edge of HCLK.
The HCLK is a reference clock from the gated main clock SI_ClkIn, i.e, HCLK will be gated off via execution of the
WAIT instruction. HCLK is also a primary output of the microAptiv UP.

The following sections describe the bus transactions:

• Section 3.1.1, "Basic Transfers"

• Section 3.1.2, "Transfer Types"

• Section 3.1.3, "Transfer Size"

• Section 3.1.4, "Burst Operation"

• Section 3.1.5, "Waited Transfers"

• Section 3.1.7, "Locked Transfers"

3.1.1 Basic Transfers

An AHB-Lite basic read and write transfer consists of two phases:

• Address: The Address phase lasts for a single HCLK cycle unless it is extended by the previous bus transfer.

• Data: The Data phase might require several HCLK cycles. It uses the HREADY signal to control the number
of clock cycles required to complete the transfer.

 AHB-Lite Interface

30 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

The simplest transfer is one with no wait states, so the transfer consists of one address cycle and one data cycle.
Figure 3.1 shows a simple read transfer, and Figure 3.2 shows a simple write transfer.

Figure 3.1 Read Transfer with no Wait States

Figure 3.2 Write Transfer with no Wait States

A slave device can insert wait states into any transfer to enable additional time for completion. Figure 3.3 shows a
read transfer with two wait states.

Figure 3.3 Read Transfer with Two Wait States

Figure 3.4 shows a write transfer with one wait state.

HCLK

HADDR[31:0]

Address phase Data phase

A B

HWRITE

HRDATA[31:0] Data (A)

HREADY]

HCLK

HADDR[31:0]

Address phase Data phase

HWRITE

HWDATA[31:0]

HREADY]

Data (A)

A B

A

HCLK

HADDR[31:0]

HWRITE

HRDATA[31:0]

HREADY]

Address phase Data phase

B

Data (A)

3.1 Interface Transactions

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 31

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 3.4 Write Transfer with One Wait State

The address phase of any transfer occurs during the data phase of the previous transfer. This overlapping of address
and data is fundamental to the pipelined nature of the bus. When a transfer is extended, it has the side-effect of
extending the address phase of the next transfer. For write operations, the master holds HWDATA stable throughout
the extended cycles. For read transfers, the slave does not have to provide valid data on HRDATA until the transfer is
about to complete. Figure 3.5 shows three transfers to unrelated address, A, B and C with an extended address phase
for address C.

Figure 3.5 Multiple Transfers

3.1.2 Transfer Types

The microAptiv UP core implements three of the four types of transfer defined in the AHB-Lite Protocol, namely,
IDLE, NONSEQ, and SEQ. The type of transfer is signified by the HTRANS[1:0] signal, as shown in Table 3.1.

Table 3.1 Transfer Types

Type HTRANS[1:0] Description

IDLE 2’b 00 Indicates that no data transfer is required

BUSY 2’b 01 Not supported

NONSEQ 2’b 10 Indicates a single transfer or the first transfer of a burst

Address phase

A B

Data (A)

Data phase

HCLK

HADDR[31:0]

HWRITE

HWDATA[31:0]

HREADY]

HCLK

HADDR[31:0]

HWRITE

HREADY

HRDATA[31:0]]

T0 T1 T2 T3 T4 T5

Data (A)

A

Write (A)

B C

Read (B) Write (C)

HWDATA[31:0]] Data (C)

Data (B)

 AHB-Lite Interface

32 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

3.1.3 Transfer Size

The microAptiv UP core has 32-bit wide unidirectional read data and write data bus separately. The HSIZE[2:0] signal
is used to indicate the size of a data transfer. The microAptiv UP core supports three types of transfer size as shown in
Table 3.2.

3.1.4 Burst Operation

The HBURST[2:0] signal is used to indicate the burst type. The microAptiv UP core supports two types of burst oper-
ations, SINGLE and WRAP4, as shown in Table 3.3. A SINGLE burst operation will transfer one word of data.
WRAP4 transfers four words of data of the same four-word line, in wrap-around fashion, starting from the addressed
word. Figure 3.4 shows the possible sequence order of the words based on different start address.

SEQ 2’b 11 The remaining transfers in a burst are Sequential and the
address is related to the previous transfer

Table 3.2 Transfer Size

Size (Bits) HSIZE[2:0] Description

8 3’b 000 Byte Transfer

16 3’b 001 Halfword Transfer

32 3’b 010 Word Transfer

Table 3.3 Burst Operation Types

Burst Operation HBURST[2:0] Description

SINGLE 3’b 000 Single Burst

INCR 3’b 001 Not supported

WRAP4 3’b 010 4 - Beat Wrapping Burst

INCR4 3’b 011 Not supported

WRAP8 3’b 100 Not supported

INCR8 3’b 101 Not supported

WRAP16 3’b 110 Not supported

INCR16 3’b 111 Not supported

Table 3.1 Transfer Types

Type HTRANS[1:0] Description

3.1 Interface Transactions

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 33

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 3.6 shows a write transfer using a four-beat wrapping burst with a wait state added in the first transfer.

Figure 3.6 Four-Beat Wrapping Burst of Write Transfer

Figure 3.7 shows a read transfer using a four-beat wrapping burst, with a wait state added for the first transfer.

Figure 3.7 Four-Beat Wrapping Burst of Read Transfer

Table 3.4 Sequence Order for 4-beat wrapping burst of word

Start Addr (1st Beat) HADDR[3:0] Sequence

0 0 4 8 C

4 4 8 C 0

8 8 C 0 4

C C 0 4 8

HCLK

HTRANS[1:0]

HADDR[31:0]

HWRITE

HBURST[2:0]

HSIZE[2:0]

HPROT[3:0]

HREADY

HWDATA[31:0]]

T0 T1 T2 T3 T4 T5 T6

NONSEQ SEQ SEQ SEQ

0×38 0×3C 0×30 0×34

WRAP4

Word

Data (0×38) Data (0×3C) Data (0×30) Data (0×34)

HCLK

HTRANS[1:0]

HADDR[31:0]

HWRITE

HBURST[2:0]

HSIZE[2:0]

HPROT[3:0]

HREADY

HWDATA[31:0]]

T0 T1 T2 T3 T4 T5 T6

NONSEQ SEQ SEQ SEQ

0×38 0×3C 0×30 0×34

WRAP4

Word

Data (0×38) Data (0×3C) Data (0×30) Data (0×34)

 AHB-Lite Interface

34 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Early Burst Termination

A burst operation can be terminated by the slave device with an ERROR response on the HRESP signal. When a
slave device issues an ERROR response, the core discontinues the current transfer, and then issues a new burst trans-
action or issues single transactions for the remaining incomplete data transfers of the previous burst. Figure 3.8 shows
a waited transfer, with the address changing, followed by an ERROR response from the slave device. The ERROR
response to the access of the address 0x24 will raise a bus error exception in the core.

Figure 3.8 Address Changes During a Waited Transfer After an ERROR

If the ERROR response is the last beat of a burst, and the next terminated access is the first beat of a new burst (single
or WRAP), this new burst will be restarted on the bus. An example is shown in Figure 3.9.

Figure 3.9 Error Response Terminates the First Beat of a Read burst

3.1.5 Waited Transfers

This section describes transfer-type changes during wait states and address changes during Waited states.

IDLE Transfer

During a waited transfer, the master is permitted to change the transfer type from IDLE to NONSEQ and also change
the address.

T0 T1 T2 T3 T4 T5 T6

HCLK

HTRANS[1:0]

HADDR[31:0]

HREADY

HBURST[2:0]

HRESP

SEQ SEQ IDLE NONSEQ

0×24 0×2C0×28

wrap4 Single

OKAY OKAY OKAY ERROR ERROR OKAY

T0 T1 T2 T3 T4 T5 T6

SEQ NONSEQ IDLE NONSEQ

0×24 0×5C0×5C

wrap4 wrap4

OKAY OKAY OKAY ERROR ERROR OKAY

HCLK

HTRANS[1:0]

HADDR[31:0]

HREADY

HBURST[2:0]

HRESP

HWRITE

3.1 Interface Transactions

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 35

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 3.10 shows a waited transfer for a SINGLE burst, with a transfer-type change from IDLE to NONSEQ.

Figure 3.10 Waited Transfer, IDLE to NONSEQ

3.1.6 Protection Control

The bus interface unit of the microAptiv UP core does not generate all protection information on the HPROT[3:0] sig-
nal. The upper three bits of HRPOT defaults to 3’b001, while the lsb is used to distinguish between an opcode fetch
and a data access, as shown in Table 3.5.

3.1.7 Locked Transfers

In the microAptiv UP core, HMASTLOCK is used to lock access of a RMW sequence raised by an atomic instruction
accessing uncached space. Figure 3.11 shows a locked transfer.

Table 3.5 Protection Control

HPROT[3:0] Description

4’b 0010 Opcode Fetch

4’b 0011 Data Access

T0 T1 T2 T3 T4 T5 T6 T7

HCLK

HTRANS[1:0]

HADDR[31:0]

HREADY

HBURST[2:0]

HRDATA[31:0]

NONSEQ IDLE IDLE NONSEQ SEQ

A Y Z B B+4

SINGLE WRAP4 WRAP4

Data (B)Data (A)

 AHB-Lite Interface

36 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 3.11 Locked Transfer

Between the locked read and write transactions, there must be IDLE cycles inserted to ensure there is enough time for
data calculation and data transmission. Other transactions are not allowed to be inserted during these IDLE cycles.
HMASTLOCK will be held until the write transaction is completed on the bus. The lock sequence would be terminated
when the Read part of the RMW sequence gets an ERROR response as shown in Figure 3.12. The HMASTLOCK
would be de-asserted right after the second phase of the ERROR response of the READ.

Figure 3.12 HMASTLOCK was deasserted by the ERROR response of Read Sequence

3.2 Clock Ratios

The AHB interface of the microAptiv UP core can be connected to a device that is running at a lower clock rate. The
core I/O registers are clocked by the primary core clock, but can be selectively enabled so that outputs are driven and
inputs are sampled in the appropriate cycles for communicating with a lower speed device. For devices running at the

HCLK

HTRANS[1:0]

HADDR[31:0]

HMASTLOCK

HWRITE

HRDATA[31:0]

HWDATA[31:0]

NONSEQ IDLE IDLE NONSEQ IDLE

A A A A

Read (A) Write

Data (A)

HREADY

Data (A)

HCLK

HTRANS[1:0]

HADDR[31:0]

HMASTLOCK

HWRITE

HRDATA[31:0]

HWDATA[31:0]

NONSEQ IDLE IDLE NONSEQ IDLE

A A A B

Read (A)

HREADY

HRESP OKAY OKAY OKAYERROR ERROR

3.3 Write Buffer

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 37

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

same core frequency, the core registers will be enabled every cycle. See Chapter 8, “Clocking, Reset, and Power” on
page 99 for more details about the clocking.

3.3 Write Buffer

The write buffer is organized as two, 16-byte buffers. Each buffer contains data from a single 16-byte aligned block
of memory. One buffer contains the data currently being transferred on the external interface, while the other buffer
contains accumulating data from the core.

Data from the accumulation buffer is transferred to the AHB-Lite bus under one of the following conditions:

• When a store is attempted by the core to a 16-byte block that is different from the block that is currently being
accumulated.

• SYNC instruction. The CACHE instruction also performs an implicit SYNC.

• Store to a valid word in the buffer if merging is disabled.

• Any store to uncached memory.

• A load to the line being merged.

• A complete 16-byte line has been gathered for a burst write and the bus is idle.

Note that if a transfer is forced, and the data in the external interface buffer has not been written out to memory, the
core is stalled until the memory write completes. After completion of the memory write, accumulated buffer data can
be written to the external interface buffer.

3.4 Merging Control

All microAptiv UP cores implement two, 16-byte collapsing write buffers that allow byte, halfword, tri-byte, or word
writes from the core to be accumulated in the buffer into a 16-byte value, before bursting the data out onto the bus in
word format. This buffer also gathers dirty cache lines during an eviction. Note that writes to uncached areas are
never merged.

Merging can be disabled. When merging is disabled, the buffer will still attempt to gather an entire 16-byte line to
generate a bursted write. If a store is attempted to a word that is already valid in the write buffer, the buffer will be
flushed, and the two stores will not merge.

The merging option is selected by the SI_MergeMode[1:0] input. The encoding is shown in Table 2.3.

 AHB-Lite Interface

38 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Chapter 4

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 39

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Interrupt Interface

This chapter describes the interrupt signalling on the MIPS32® microAptiv™ UP processor core. It is divided into
the following sections:

• Section 4.1 “Introduction”

• Section 4.2 “Compatibility and Vectored Interrupt Modes”

• Section 4.3 “External Interrupt Controller Mode”

4.1 Introduction

The core I/O for interrupts is treated differently depending on the interrupt mode in which the core is operating. Refer
to the Software User’s Manual [3] for more details on the interrupt modes.

4.2 Compatibility and Vectored Interrupt Modes

In these modes, the interrupt pins are treated as individual requests. Each pin indicates a separate interrupt or group of
interrupts. The interrupt pins can be driven asynchronously. They are continually sampled, reflected in the CauseIP
field. and made available to the exception generation logic.

In compatibility mode, the 8 interrupt pins and the 2 software interrupt bits are treated equally by hardware. If any
one of them is asserted and enabled by software and the operating mode of the processor, an interrupt exception will
be taken. The exception vector used is the same for all interrupts and software must check the CauseIP field to deter-
mine what interrupts are active and how to service them.

In vectored interrupt mode, the interrupt pins and software interrupt bits are prioritized by the hardware. SI_Int[7] is
the highest priority, followed by [6],[5]...[0] and then the two software interrupts. The highest priority interrupt that is
active and enabled when an interrupt exception is taken will determine which interrupt vector will be used. The soft-
ware at each vector can be specialized to only handle the particular interrupt associated with it.

In both of these modes, processor generated interrupts (Timer and Performance Counter Interrupts) are output from
the core and must be brought back in on the SI_Int pins. Traditionally, this has been done on bit[5], but this can be tai-
lored to the particular interrupt scheme in the system. The SI_IPTI core input is used to indicate to software which
interrupt pin this interrupt is being tied to. This input is shifted to reflect the bit position within the entire CauseIP
field - if Int[5] is used, it should be tied to 3’h7, while Int[0] would be signaled as 3’h2. Table 4.1describes how the

 Interrupt Interface

40 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

various interrupt signals are used in these modes. A number of signals are specific to EIC mode and can be tied to 0
(inputs) or left unconnected (outputs) if an external interrupt controller is not present.

4.3 External Interrupt Controller Mode

In this mode, the interrupt pins are treated as a bus with an encoded interrupt priority level from 0 to 255 (with 0 indi-
cating no interrupt pending). Because the bits are read as a bus, they must be driven synchronously to the SI_Clk
clock to ensure that valid values are seen by the processor.

The requested interrupt priority level signaled on SI_Int[7:0] is compared with the interrupt priority level that is cur-
rently being processed as set by software in StatusIPL. If the requested interrupt is a higher priority and the core is in
an operating mode where interrupts are allowed, an interrupt exception will be taken, and the interrupt vector used
will be a function of the SI_EICVector input. When shadow register sets are present, the EIC can also specify which

Table 4.1 Interrupt Signals in Compatibility and Vectored Modes

Signal Name Description

SI_EICPresent
Indicates whether an external interrupt controller is present. This value is visible to
software in the Config3VEIC register field.

SI_EICVector Unused

SI_EISS[3:0] Unused

SI_IAck Unused

SI_Int[7:0] Active high Interrupt pins. These signals are driven by external logic and when
asserted indicate an interrupt exception to the core. The SI_Int signals go through
synchronization logic and can be asserted asynchronously to SI_ClkIn.

The interrupt pins are level-sensitive and should remain asserted until the interrupt
has been serviced.

In Release 1 Interrupt Compatibility mode:
• All 8 interrupt pins have the same priority as far as the hardware is concerned.
• Interrupts are non-vectored.
In Vectored Interrupt (VI) mode:
• The SI_Int pins are interpreted as individual hardware interrupt requests.
• Internally, the core prioritizes the hardware interrupts and chooses an interrupt

vector.

SI_ION[17:0] Unused

SI_IPL[7:0] Unused

SI_IPTI[2:0] Indicates the SI_Int hardware interrupt pin that the timer interrupt pin
(SI_TimerInt) is combined with, external to the core. The value of this bus is visi-
ble to software in the IntCtlIPTI register field.

The value driven on this signal and stored in the register indicates the bit position
within the entire CauseIP field. Thus a value of 0x7 would indicate SI_Int[5] and

0x2 would indicate SI_Int[0].

SI_IVN[5:0] Unused

SI_SWInt[1:0] Unused

SI_TimerInt Timer interrupt indication. This signal is asserted whenever the Count and
Compare registers match and is deasserted when the Compare register is written.
This hardware pin represents the value of the CauseTI register field.

4.3 External Interrupt Controller Mode

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 41

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

register set a particular interrupt should use. This value is driven on SI_EISS. If different values are used for different
interrupts, the requested shadow set should change at the same time as the requested priority level.

When an interrupt exception is taken, the core will assert SI_IAck for one SI_Clk cycle. At this time, SI_IPL[7:0],
SI_IVN[5:0], and SI_ION[17:1] will also be updated and reflect the priority, vector number, and offset number of the
interrupt that was taken respectively. This information may be useful to the interrupt controller.

In EIC mode, processor-generated Timer Interrupts as well as Software Interrupts are output from the core. The inter-
rupt controller should take these values and prioritize them relative to other system interrupts.

Note that the processor core is always in compatibility mode following reset. The interrupt controller should be aware
of the signal behavior in that mode as described above, or the software should switch to EIC mode prior to enabling
any interrupts.

Figure 4.1shows some example waveforms of interrupt signals. SI_Int is changing frequently based on the state of
interrupts coming into the EIC. The different interrupts want to use different shadow register sets, so SI_EISS is
changing at the same time as SI_Int. In cycle 5, the core asserts SI_IAck, indicating that it has taken an interrupt. The
value on SI_IPL[7:0], SI_IVN[5:0] and SI_ION[17:1] are updated and show which interrupt was taken. At this point, the
currently requested interrupt is a higher priority, so when software re-enables interrupts, the core will take the higher
priority interrupt.

Figure 4.1 EIC Interrupt Signals

Clock #

SI_Clk

SI_Int

SI_EISS

1 2 3 4 5 6 7 8

SI_IPL

SI_IAck

0x14 0x16 0x17 0x16 0x1a 0x1b

0x0 0x1 0x2 0x1 0x3 0x3

0x14Prev. Value

SI_EICVector 0x23 0x1b 0x2a 0x3c 0x16 0x20

SI_Offset 0x1e100 0xff00 0x3c400 0x5a00 0xb00

SI_IVN 0x23Prev. Value

SI_ION 0x1e100Prev. Value

0xcd0

 Interrupt Interface

42 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Table 4.2 describes the EIC mode behavior of the interrupt signals.

Table 4.2 Interrupt Signals in EIC Mode

Signal Name Description

Interrupt Signals:

SI_EICPresent Must be set to 1 to enable EIC mode.

SI_EICVector[5:0]

Specifies the interrupt vector to be used for the currently requested interrupt. If the
interrupt is taken, the exception processing will begin at this interrupt vector. This
allows the vector number to be different than the priority level. If this functionality
is not needed, this input should be driven to the same value as SI_Int. This value
will be output on the SI_IVN pins and SI_IAck will be asserted for one cycle.

SI_EISS[3:0]
General purpose register shadow set number to be used when servicing an interrupt
in EIC interrupt mode.

SI_IAck

Interrupt acknowledge indication for use in External Interrupt Controller mode.
This signal is active for a single SI_ClkIn cycle when an interrupt is taken. When
the processor initiates the interrupt exception, it loads the value of the SI_Int[7:0]
pins into the CauseRIPL field (overlaid with CauseIP9..IP2), and signals the exter-

nal interrupt controller to notify it that the interrupt request is being serviced.

SI_Int[7:0] Active high Interrupt pins. These signals are driven by external logic and when
asserted indicate an interrupt exception to the core. In External Interrupt Controller
mode, the interrupt pins are interpreted as an encoded value, so they must be
asserted synchronously to the SI_Clk clock to guarantee that all bits are received by
the core in a particular cycle.

The interrupt pins are level-sensitive and should remain asserted until the interrupt
has been serviced.
• An external block prioritizes its various interrupt requests and produces a vector

number of the highest priority interrupt to be serviced.
• The priority level is driven on the SI_Int pins and is treated as an 8-bit encoded

value in the range of 0..255.
• When the core starts the interrupt exception, it loads the sampled value of the

SI_Int[7:0] pins into the CauseRIPL field (overlaid with CauseIP9..IP2). This

value will be output on the SI_IPL pins, and SI_IAck will be asserted for one
cycle.

SI_ION[17:1] Current interrupt offset number, provided for use by an external interrupt controller.
This value is updated whenever SI_IAck is asserted.

SI_IPL[7:0] Current interrupt priority level from the CauseIPL register field, provided for use

by an external interrupt controller. This value is updated whenever SI_IAck is
asserted.

SI_IVN[5:0] Current interrupt vector number, provided for use by an external interrupt control-
ler. This value is updated whenever SI_IAck is asserted.

SI_IPTI[2:0] Unused

SI_Offset[17:1] This signal will be used when “Send entire vector offset along with RIPL during
EIC mode” is selected during configuration. Otherwise, it will ignored.
This specifies the vector offset to be used for the currently requested interrupt. If
the interrupt is taken, the exception processing will begin at this vector offset. This
allows the vector offset to be directly used by the processor.This value will be out-
put on SI_ION, and SI_IAck will be asserted for one cycle.

4.3 External Interrupt Controller Mode

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 43

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

SI_SWInt[1:0] Software interrupt request.These signals represent the value in the IP[1:0] field of
the Cause register. They are provided for use by an external interrupt controller.

SI_TimerInt Timer interrupt indication. This signal is asserted whenever the Count and
Compare registers match and is deasserted when the Compare register is written.
This hardware pin represents the value of the CauseTI register field.

Table 4.2 Interrupt Signals in EIC Mode (Continued)

Signal Name Description

 Interrupt Interface

44 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Chapter 5

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 45

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

EJTAG Interface

This chapter discusses chip-level integration details for the EJTAG-related signals on a MIPS32 microAptiv UP core,
as well as some system level requirements. A comparison of EJTAG versus JTAG is covered first, to clarify the dif-
ferences and similarities. Then EJTAG chip and system issues related to one or multiple microAptiv UP cores within
a single chip are discussed.

This chapter contains the following sections:

• Section 5.1 “EJTAG versus JTAG”

• Section 5.2 “How to Connect EJ_* Pins”

• Section 5.3 “cJTAG Interface”

• Section 5.4 “Multi-Core Implementations”

• Section 5.5 “Trace Capability”

• Section 5.6 “SecureDebug”

An EJTAG TAP controller is an optional feature in an microAptiv UP core. If the microAptiv UP core under use does
not contain the EJTAG TAP controller, then much of this chapter is irrelevant.

Reference to the general EJTAG Specification [6] can be found several times in this chapter. MIPS recommends that
you become familiar with the general EJTAG Specification in addition to this chapter, before deciding how to inte-
grate EJTAG into your chip.

5.1 EJTAG versus JTAG

The name EJTAG is often confused with IEEE JTAG boundary scan, but EJTAG is not related to boundary scan.
EJTAG is a set of hardware-based debugging features on a MIPS processor, accessible by debug software. EJTAG is
used by software programmers to control and debug code execution, as well as to access hardware resources within a
MIPS processor during code development. The interface for EJTAG access to the core uses a superset of the JTAG
TAP interface, but that is really its only similarity with boundary scan.

Read the “EJTAG Debug Support” chapter in the MIPS32® microAptiv™ UP Processor CoreSoftware User’s Man-
ual [3] to learn more about the software debugging capabilities of EJTAG.

5.1.1 EJTAG Similarities to JTAG

From a functional viewpoint, the following features are inherited from the JTAG TAP interface:

• Protocol for selecting data and control registers using EJ_TMS.

 EJTAG Interface

46 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

• Serial protocol for transmitting data in and out of the selected register using EJ_TDI and EJ_TDO.

• Asynchronous reset to the EJTAG TAP controller using EJ_TRST_N (TRST*).

• EJ_TCK driving the clock input of all the EJTAG TAP controller registers.

Because of these similarities, it is possible to share certain physical resources between the TAP controllers in EJTAG
and JTAG. MIPS recommends NOT sharing any logic or pins between JTAG and EJTAG. MIPS recognizes that
reducing pin count is often necessary in large System-on-a-Chip (SOC) chip designs.

5.1.2 Sharing EJTAG Resources with JTAG

It is theoretically possible to share the TAP controller for JTAG and EJTAG purposes because the EJTAG control
commands do not use reserved JTAG commands. This TAP sharing is not supported by the microAptiv UP core,
however. The microAptiv UP core has its own independent TAP controller that is reserved exclusively for EJTAG
operation.

Because the EJTAG electrical specification is identical to the JTAG specification, it is possible to share the physical
chip pins between the two TAP controllers between EJTAG and JTAG. There are two ways this might be accom-
plished, but both of them have issues which must be considered.

5.1.2.1 Daisy-Chained TDI-TDO

One method is to hook up the physical pins TCK, TMS and TRST* in parallel to both TAP controllers, and then
daisy-chain the TDI/TDO pins in the following manner:

• physical pin TDI to JTAG TDI

• JTAG TDO to EJTAG EJ_TDI

• EJTAG EJ_TDO to physical pin TDO.

• EJTAG EJ_TDOzstate to output enable of physical TDO.

Figure 5.1 shows the serial TDI-TDO chain setup with parallel control of the TAP controllers.

5.1 EJTAG versus JTAG

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 47

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 5.1 Daisy-Chained TDI-TDO Between JTAG and EJTAG TAP Controllers

Some EJTAG debug tool chains can handle this configuration. If another TAP controller in the path to the EJTAG
TAP controller can be identified, then the debug software must be told the following items:

• the Instruction word length of the JTAG TAP controller

• the Instruction word command to select the bypass register (usually all 1’s)

• the length of the bypass register (usually one bit)

This will enable the debugger to always select the bypass register within the JTAG TAP controller during EJTAG
access, and compensate for the bypass register length.

The main concern is the presence of the serial EJTAG TAP controller in the JTAG TAP path; automatic JTAG test-
benches may not like the visibility of another TAP controller inside the chip. If considering the JTAG-EJTAG
daisy-chained approach, ensure any debug tools that will be connected to the JTAG or EJTAG controllers are capable
of placing the other controller(s) in bypass and the additional shift length can be accommodated by the tools.

5.1.2.2 Multiplexed Pin Access

A select signal can choose which TAP controller has access to the physical pins. How the user wishes to gate off the
inputs of the unselected TAP controller depends on the presence of an asynchronous reset input. In Figure 5.2, a setup
which anticipates the existence of TRST* on the “CHIP JTAG TAP” controller is shown.

TCK
TMS

TRST*

TDI
TDO
TDO_OEN

EJ_TCK
EJ_TMS

EJ_TRST_N

EJ_TDI
EJ_TDO
EJ_TDOzstate

TCK
TMS

TRST*

TDI

TDO

CHIP JTAG TAP

EJTAG TAP

microAptiv UP core

SOC_CHIP

 EJTAG Interface

48 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 5.2 Multiplexing Between JTAG and EJTAG TAP Controllers

TAPSelect in Figure 5.2 is shown as an SOC_CHIP external input, and NOT as internal logic or registered signal.
This is for two important reasons:

1. When doing board level interconnect testing. The JTAG controller should be able to work the boundary scan
without any other controlled pins beyond the five JTAG pins.

2. When the board holding the SOC_CHIP is used for software development, EJTAG must be functional on the
TAP controller while the microAptiv UP core (and thus probably the entire SOC_CHIP) is held in reset. During
reset, EJTAG commands can initialize the microAptiv UP core to leave the reset state in Debug Mode, and thus
the debug interface can control the microAptiv UP core before it attempts to fetch the first instruction.

The two reasons above also imply that TAPSelect must be valid and fixed while using either of the two TAP control-
lers. For system integrity, TAPSelect should also be kept valid while there is no probe connected to the TAP Probe
Connector. One small implication to this is, that the TAPSelect input can not be tested by JTAG boundary scan. It
might be wise to NOT have boundary scan include the TAPSelect input logic. This is, however, the only problem in
this shared TAP controller configuration. A two-way jumper on the PCB could be created to select the fixed state of
TAPSelect.

If pin sharing between EJTAG and JTAG TAP controllers is absolutely unavoidable, MIPS recommends the imple-
mentation shown in Figure 5.2.

5.2 How to Connect EJ_* Pins

In the previous section, issues concerning the sharing of EJTAG TAP and JTAG TAP pins were discussed. This sec-
tion assumes that the chip has a separate set of EJTAG TAP pins. Other non-TAP EJTAG pins on the microAptiv UP
core will require separate pins on the chip. This section will discuss how to connect all the EJ_* pins in the chip.

5.2.1 EJTAG Chip-Level Pins

The EJTAG TAP signals on the microAptiv UP core are: EJ_TCK, EJ_TMS, EJ_TDI, EJ_TRST_N, EJ_TDO and
EJ_TDOzstate. An extra signal EJ_DINT (Debug Interrupt) can also be connected to an external pin. Figure 5.3
shows the intended connection to the chip. Pin names for the chip have been chosen as the usual JTAG TAP signals,
with an “E” prefix.

TCK
TMS

TRST*

TDI
TDO
TDO_OEN

TCK
TMS

TRST*

TDI

TDO

CHIP JTAG TAP

microAptiv UP

SOC_CHIP
TAPSelect

EJ_TCK
EJ_TMS

EJ_TRST_N

EJ_TDI
EJ_TDO
EJ_TDOzstate

1
0

1
0

5.2 How to Connect EJ_* Pins

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 49

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 5.3 EJTAG Chip-Level Pin Connection

AC timing characteristics for the ETDO driver and the input buffers can be found in Section 8.2, “AC Timing Charac-
teristics”, of the EJTAG Specification [6]. In particular notice that all the probe pins must have pull-up, pull-down, or
series resistors attached; see Section 8.5, “Target System PCB Design” of the EJTAG Specification. As shown in
Figure 5.3, all the chip-level pins have corresponding pins on the EJTAG Probe Connector. RST* is special, because
an assertion (active low) on this pin must result in a system level reset. Refer to Figure 5.4 for further details on
EJTAG-related reset circuitry.

5.2.1.1 Optional ETRST* Pin

Although the ETRST* is an optional input pin on the chip, it is strongly recommended that the ETRST* pin be present.
If this pin is not used, on-chip logic is needed that asserts EJ_TRST_N at power-up. This assertion can ONLY happen
on power-up or at cold-start. Any soft reset of the chip and microAptiv UP core must not affect the EJ_TRST_N sig-
nal. Special timing also applies to the deassertion of EJ_TRST_N. Refer to Section 6.3 of the EJTAG Specification,
“Optional TRST* Pin” for more details.

5.2.1.2 Optional EJ_DINT Pin

The EJ_DINT input pin is also optional. An assertion of EJ_DINT in the microAptiv UP core triggers a Debug Inter-
rupt Exception. This will stop the normal program flow within the microAptiv UP core and force it to the Debug
Exception Vector. The same effect can be achieved by setting the EjtagBrk bit in the EJTAG Control Register. The
EJTAG Control Register is accessed through the TAP controller pins, which takes multiple ETCK clock periods.

The difference is that asserting the EJ_DINT input has much lower latency, and gives faster control over forcing the
processor into Debug Mode. If fast entry into Debug Mode is not needed, then EJ_DINT pin can be removed from the
chip.

EJ_DINT on the microAptiv UP core may also be connected to on-chip logic, such as a Multi-Core Breakpoint Unit
(see Figure 5.6 for more details). The EJ_DINTsup (EJTAG Debug Interrupt Pin Supported) input on an microAptiv
UP core is asserted only if the EJ_DINT input connected to the DINT pin of the Probe Connector. The EJ_DINT input
may not be disabled if the the EJ_DINTsup input is deasserted. EJ_DINTsup is only used to set the DINTsup bit in the
EJTAG Implementation Register.

If EJ_DINT on the microAptiv UP core to an interrupt source is not connected, then both EJ_DINT and EJ_DINTsup
must be deasserted by connecting them to logic zero.

EJ_TCK
EJ_TMS

EJ_DINT

EJ_TDI
EJ_TDO
EJ_TDOzstate

ETCK
ETMS

EJ_DINT

ETDI
ETDO

microAptiv UP

SOC_CHIP

EJ_TRST_NETRST*

Optional

Optional

EJ_DINTsupVDD

EJ_DebutM

RESET Chip Reset

Probe Connector

TCK
TMS

DINT

TDI
TDO

TRST*

RST*
System

Reset logic

Optional

Optional

Note: Probe connections should include pull-up, pull-down, or series resistors. See the EJTAG Specification fo rmore details.

 EJTAG Interface

50 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

5.2.2 EJTAG Device ID Input Pins

The Device ID Register in the EJTAG TAP controller gets its values directly from EJ_ManufID[10:0],
EJ_PartNumber[15:0] and EJ_Version[3:0]. If these pins are not already tied off to specific values by a hard core pro-
vider, the integrator is free to choose what values to place on EJ_PartNumeber[15:0] and EJ_Version[3:0].

5.2.2.1 EJ_ManufID[10:0]

EJ_ManufID[10:0] must be a compressed form of a JEDEC standard manufacturer’s identification code. See
“5.2.2 “EJTAG Device ID Input Pins” on page 50”.

5.2.2.2 EJ_PartNumber[15:0]

EJ_PartNumber[15:0] is recommended to be a manufacturer-specific number identifying this core as a MIPS32
microAptiv UP core. A new physical cache configuration could facilitate a new value on EJ_PartNumber[15:0], but
could also be an increment of the number on the EJ_Version[3:0] input.

5.2.2.3 EJ_Version[3:0]

EJ_Version[3:0] is recommended to be unique for each new physical layout, with the same EJ_PartNumber[15:0]
input.

5.2.3 EJTAG Software Reset Pins

Two reset-related EJTAG outputs are controlled by corresponding bits in the EJTAG Control Register: Peripheral
Reset (EJ_PerRst) is controlled by the PerRst bit, and Processor Reset (EJ_PrRst) is controlled by the PrRst bit.

Another software reset-related pin is Soft Reset Enable (EJ_SRstE). This pin is driven from the SRE bit in the Debug
Control Register (the DCR is a memory-mapped register present within the microAptiv UP core, accessible in Debug
Mode).

5.2.3.1 EJ_PrRst Signal

Processor Reset can be interpreted as “System Soft Reset”. When the PrRst bit is asserted by EJTAG debug software,
the result must be one of two possible scenarios:

1. The entire system is reset. This could be achieved by connecting EJ_PrRst to chip (internal or external) soft reset
logic.

2. Nothing happens. Either EJ_PrRst is left unconnected or the assertion is gated off by other logic like the
EJ_SRstE pin.

A protocol exists using the Rocc (Reset Occurred) bit for debug software to identify which of the two scenarios
occurs. Figure 5.4 shows one possible implementation for the use of EJ_PrRst.

5.2.3.2 EJ_PerRst Signal

Peripheral Reset can be used as a soft reset of the peripherals surrounding the microAptiv UP core. The effect of an
asserted EJ_PerRst is implementation-dependent; however, it should never result in a reset of the microAptiv UP
core itself. Figure 5.4 shows one possible implementation of the use of EJ_PerRst.

5.3 cJTAG Interface

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 51

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

5.2.3.3 EJ_SRstE Signal

As described earlier, this signal can be used to control one or more Soft Reset sources in the system reset logic. See
Figure 5.4 for a possible implementation.

5.2.3.4 A Reset Logic Implementation

Figure 5.4 shows a possible implementation of the EJ_PrRst, EJ_PerRst and EJ_SRstE pins in a system. Note that in
this example all the Reset control logic is place outside the chip containing the microAptiv UP core. This requires 3
extra output signals, but this need not be the case.

Figure 5.4 Reset Circuitry Implementation

Note: The RST* input to the Reset Logic from the Probe Connector is a required connection when implementing
EJTAG into the system.

5.3 cJTAG Interface

One of the enhancements in the updated IEEE 1149.7 standard is the reduction in the number of external signals
required on the EJTAG interface from four to two. This 2-pin interface, also known as the cJTAG interface, provides
the capability of debugging with only two wires when pin count is critical..

MIPS provides a cJTAG Adapter IP block on MIPS softcores to convert between the 2-pin interface in 1149.7 and the
4-pin interface in 1149.1. The adapter IP resides outside the core and is treated as a separate IP block from the point
of view of integration. The implementation is shown in Figure 5.5.

SI_ColdReset

EJ_SRstE

RESET

SRSTEN

microAptiv UP

SOC_CHIP

Reset Logic

EJ_PerRstPERRST
EJ_PrRstPRRST

Chip Reset logic

PROCESSOR_RESET

Hard Reset
Sources

Other Soft Reset
Sources

PERIPH_RESET

MIPS_microAptiv UP_RESET

OTHER_RESET

Soft Reset

 Peripheral devices
reset

Hard Reset

Periph Soft Reset

Timer Hold Reset

EJTAG Probe
Connector

TCK
TMS

DINT

TDI
TDO

TRST*

RST*

Timer Hold Reset

Optional

Optional

Optional

 EJTAG Interface

52 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 5.5 cJTAG Interface

MIPS debug probes have been enhanced to support cJTAG—a single probe can support both legacy EJTAG and the
new cJTAG. EJTAG and cJTAG use the same 14-pin connector specified in the MIPS EJTAG specification, but
when connected to cJTAG, the TDI and TDO signals are not used.

The 1149.7 specification is complex and much more flexible than is needed in normal applications. The provided
cJTAG Adapter IP implemented is a subset of 1149.7 specifcation. Refer to the cJTAG Adapter User’s Manual [7]
for more details.

5.4 Multi-Core Implementations

In a chip configuration with multiple microAptiv UP cores, all EJTAG TAP controllers can share one set of EJTAG
TAP controller pins. The MIPS-recommended daisy-chain connection for a Multi-Core configuration is shown in
Figure 5.6.

Tap
Controller

microAptiv

EJTAG
EJTAG
4-wire

interface

TDI
TDO
TCK
TMS

TMSC
TCK

cJTAG
Adapter IP

Block

cJTAG
2-wire

interface

5.4 Multi-Core Implementations

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 53

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 5.6 Multi-Core Implementation

5.4.1 TDI/TDO Daisy-Chain Connection

In a Multi-Core implementation, one of the processor cores is often be the Master. In Figure 5.6, the Master core is
first in the TDI/TDO daisy-chain to get a low latency access to control and data registers in the Master core. When a
large number of EJTAG TAP controllers are connected in the daisy-chain, the placement of the Master core be of any
significance.

The chip’s ETDO output enable is controlled by EJ_TDOzstate in the last core in the chain because this core drives
the TDO chip pin.

5.4.2 Multi-Core Breakpoint Unit

The Multi-Core Breakpoint Unit (MCBU) shown to the right in Figure 5.6 is an implementation-dependent block.
Each core can signal whether or not it is in Debug Mode based on its EJ_DebugM output. When doing Multi-Core
debug, a low latency entry into Debug Mode may be desired for all or some of the other processor cores on the chip,
based on the entry of one of the processors into Debug Mode. For example, a Slave core might rely on full operation
by the Master core; then the Master core’s entry into Debug Mode can trigger a Debug Interrupt (EJ_DINT) to the
Slave core(s). This would place each Slave core in Debug Mode with low latency after the Master core entered Debug
Mode (depending on implementation, the latency would be less than 10 cycles).

ETCK
ETMS

ETRST*

ETDI
ETDO

microAptiv UP core

SOC_CHIP

EJ_TCK
EJ_TMS

EJ_TRST_N

EJ_TDI
EJ_TDO
EJ_TDOzstate

microAptiv UP core

EJ_TCK
EJ_TMS

EJ_TRST_N

EJ_TDI
EJ_TDO
EJ_TDOzstate

microAptiv UP core

EJ_TCK
EJ_TMS

EJ_TRST_N

EJ_TDI
EJ_TDO
EJ_TDOzstate

EJ_DINT

EJ_DebugM

EJ_DINT

EJ_DebugM

EJ_DebugM

DINT_n

DebugM_n

EJ_DINT

EJ_DINT DebugM_Ext

Multi-Core Breakpoint
Unit

DebugM_1

DebugM_0

DINT_1

DINT_0

Master

⇓ One or more Processor cores with EJTAG ⇓

 EJTAG Interface

54 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Debugger software can detect that the Master core has entered Debug Mode, and trigger this for the Slave core(s).
This might be supported by your Debug software as an automatic feature. The detection and the following Slave
core(s) debug trigger would have to go through the serial TAP controller chain, which could take hundreds of cycles
before the Slave core(s) enter Debug Mode.

The physical implementation and/or programmability of the MCBU is a system decision beyond the scope of this
document; however, if an MCBU is designed, the EJ_DebugM signal is a level-sensitive signal and EJ_DINT is rising
edge-triggered. Creating a DINT_x signal from a simple OR-function of one or more DebugM_x signals does not have
the desired effect. A rising edge detection on a DebugM_x output signal is needed to generate the desired rising edge
on a DINT_x input signal. Once in Debug Mode, the microAptiv UP core ignores any subsequent Debug Interrupts on
EJ_DINT.

5.5 Trace Capability

An microAptiv UP core can support MIPS iFlowtrace™ features. The iFlowtrace mechanism is an option that pro-
vides tracing of the Program Counter and special events. The iFlowtrace logic is included as a build-time option. Four
basic options are possible:

1. No iFlowtrace logic included.

2. iFlowtrace logic to on-chip trace memory (embedded within the core).

3. iFlowtrace logic to support an off-chip trace probe (with off-chip trace memory).

4. Combination of options 2 and 3.

If options 1 or 2 are present, then the TC_ output pins on the core will be statically driven to zero, and all the TC_
inputs are ignored. With option 2, access to the trace features and on-chip trace memory occurs through DRSEG reg-
isters, namely ITCBTW, ITCBRDP and ITCBWRP.

For the remaining options, the TCtrace Interface on the microAptiv UP core is active and the TC_ inputs and outputs
must be connected to a core external Probe Interface Block (PIB), or tied off. If a PIB is not implemented then all the
TC_ inputs should be tied low.

The specific implementation details for the PIB and how to connect it to the core can be found in the EJTAG Trace
Control Block Specification [6] which structured the whole connection logic to support the complete MIPS Trace fea-
ture. But for iFlowtrace, it is relative simpler. There are only 5 useful TCtrace ports, namely TC_DATA, TC_Valid,
TC_Stall, TC_ClockRatio and TC_Pibpresent. TR_DATA is fixed at 4 bits wide, TR_CLK is always one half or one
fourth of the core cycle.

Figure 5.7 shows the timing relationship between TC_Valid and TC_Stall, when TC_Data changes value depending
on TC_Stall.

5.6 SecureDebug

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 55

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 5.7 TC_Valid and TC_Stall Timing

5.6 SecureDebug

The SecureDebug debug feature is optional and it is used to provide a controllable method to disable EJTAG access
so that an EJTAG probe cannot be used to control a target processor, place it into debug mode, insert instructions,
access memory, breakpoint, or single step.

An input signal to the core, EJ_DisableProbeDebug, when asserted has the following effects:

1. It forces ProbEn = 0

2. It forces ProbTrap = 0

3. EjtagBrk is disabled.

4. EJTAGBOOT is disabled.

5. PC Sampling is disabled.

6. DINT signal is ignored .

Suggested implementation of the EJ_DisableProbeDebug signal is for a microcontroller to provide a bit within
non-volatile memory (outside the core) that is pre-programmed to set or clear this control signal.

Note that cJTAG is implemented by converting the EJTAG signals to two cJTAG signals. If the SecureDebug feature
is implemented, cJTAG is similarly secured.

For more detail information, refer to the Disabling EJTAG Debugging section in the EJTAG Debug Support in the
microAptiv™ UP Core chapter of the MIPS32® microAptiv™ UP Processor Core Software User’s Manual.

Core Clock

TC_Valid

TW1 TW2TC_Data[63:0]

TC_Stall

Data is picked up at the point of deassertion of TC_Stall

 EJTAG Interface

56 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Chapter 6

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 57

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Coprocessor Interface

This chapter describes the MIPS Core Coprocessor Interface supported by the MIPS32 microAptiv UP processor
core. The MIPS Core Coprocessor Interface is described in the companion document, titled Core Coprocessor Inter-
face Specification [9]. The Core Coprocessor Interface is an optional feature in an microAptiv UP core. If the
microAptiv UP core does not contain the Core Coprocessor Interface logic, then this chapter is irrelevant. This chap-
ter discusses the specific microAptiv UP implementation of the Core Coprocessor Interface, in the following sec-
tions:

• Section 6.1 “Introduction”

• Section 6.2 “Coprocessor Instructions”

• Section 6.3 “Signal Configuration”

• Section 6.4 “Interface Protocols”

• Section 6.5 “Power Saving Issues”

• Section 6.6 “Template for Coprocessor Modules”

6.1 Introduction

The microAptiv UP core Coprocessor Interface allows a single Coprocessor 2 (COP2) to be connected to the integer
unit. The function of Coprocessor 2 is user-definable and is intended to allow special-purpose engines, such as a
graphics accelerator that is integrated into the architecture. The microAptiv UP core does not support an interface to a
floating-point unit, which is dedicated to Coprocessor 1 in the MIPS32® Architecture. The special handling for float-
ing-point instructions needed in the integer unit, as well as the extra signaling needed between the integer unit and a
floating-point unit, is not present in an microAptiv UP core.

The Coprocessor Interface has the following features:

• No late or critical signals are part of the interface. This allows for easier design and synthesis for coprocessor
designers.

• By keeping the interface as simple as possible, designers can concentrate on the coprocessor functionality rather
than its interface.

• Minimal required interface logic, thereby minimizing area and power overhead.

• Performance is not compromised. This interface is compatible with all high-performance features of the
microAptiv UP processor core.

• Fully compliant to the MIPS Core Coprocessor Interface standard.

 Coprocessor Interface

58 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

6.2 Coprocessor Instructions

An microAptiv UP core supports all MIPS32-compliant COP2 instructions, except the load double (LDC2) and store
double (SDC2) instructions. Table 6.1 lists all the supported instructions and how they are decoded.

Only instructions with the decode specified in Table 6.1 may be sent to the coprocessor. If an instruction is not sup-
ported by the coprocessor, then a reserved instruction (RI) exception must be sent back to the microAptiv UP core
(see 6.4.5 “Coprocessor Exceptions”).

Table 6.1 Supported Coprocessor 2 instructions

Instruction Decode Description

LWC2 IR[31:26] = 1100102 Load Word from memory to a Coprocessor 2 register.

COP2 register number = IR[20:16], sub-select = 01.

1. The LWC2 and SWC2 instructions has no room to specify a sub-select COP2 register value. sub-select 0 must be
assumed.

SWC2 IR[31:26] = 1110102 Store Word to memory from a Coprocessor 2 register.

COP2 register number = IR[20:16], sub-select = 01.

MFC2 IR[31:26] = 0100102 &

IR[25:21] = 000002

Move word from Coprocessor 2 register to processor general-purpose regis-
ter.

COP2 register number = IR[15:11], sub-select = IR[2:0]2.

2. The MFC2 and MTC2 instructions target a COP2 register (0-31) with a sub-select (0-7), effectively making the
COP2 register file of size: 32x8 = 256 registers.

CFC2 IR[31:26] = 0100102 &

IR[25:21] = 000102

Move word from Coprocessor 2 control register to processor general-pur-
pose register.

COP2 control register number = IR[15:11]3.

3. The CFC2 and CTC2 instructions target COP2 control registers (0-31). There is no sub-select field, making the
COP2 control register file of size: 32 registers.

MTC2 IR[31:26] = 0100102 &

IR[25:21] = 001002

Move word to Coprocessor 2 register from processor general-purpose regis-
ter.

COP2 register number = IR[15:11], sub-select = IR[2:0]2.

CTC2 IR[31:26] = 0100102 &

IR[25:21] = 001102

Move word to Coprocessor 2 control register from processor general-pur-
pose register.

COP2 control register number = IR[15:11]3.

BC2F
BC2FL

IR[31:26] = 0100102 &

IR[25:23] = 0102 &

IR[16] = 02

Branch on Coprocessor 2 condition false (likely)4.
The condition code check from the coprocessor should be set if the condi-
tion is False.
Condition is specified by IR[22:18].

4. The BC2 instructions use IR[17] to select between branch and branch likely type instructions. The coprocessor
would typically not care to look at IR[17] for BC2 instruction decodes.

BC2T
BC2TL

IR[31:26] = 0100102 &

IR[25:23] = 0102 &

IR[16] = 12

Branch on Coprocessor 2 condition true (likely)4.
The condition code check from the coprocessor should be set if the condi-
tion is True.
Condition is specified by IR[22:18].

COP2 IR[31:26] = 0100102 &

IR[25] = 12

Perform Coprocessor 2 operation.
Operation is specified by IR[24:0].

6.3 Signal Configuration

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 59

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

The microAptiv UP core only dispatches instructions to the coprocessor if the CU2 bit in the CP0 Status register is
set. Refer to the MIPS32 microAptiv UP Processor CoreSoftware User’s Manual for details on Coprocessor 2
instructions and CP0 registers.

6.3 Signal Configuration

The microAptiv UP core Coprocessor 2 interface supports a subset of the possible features specified in the Core
Coprocessor Interface Specification. Following is a list of the supported features of the microAptiv UP core Copro-
cessor Interface:

• A single COP2 coprocessor is supported. No support for the floating-point COP1 coprocessor.

• Data transfers are 32 bits. No support for 64-bit buses and 64-bit instructions (LDC2/SDC2).

• One issue group is supported (group 0). No support for dual (or more) issue.

• Data from the coprocessor can only be one instruction out-of-order.

• Data to the coprocessor is always sent in order.

• An instruction is never nullified.

From a static pin configuration point of view, the supported features listed above have the following consequences
(refer to Table 2.3 for a listing of all the microAptiv UP core signals).

The CP2_inst32_0 output is tied high (logic 1). The microAptiv UP core is a MIPS32 compliant core only, and does
not support any 64-bit features. All instructions assume the coprocessor behaves as a 32 bit device, mandated by

always asserting CP2_inst32_0. A possible CP2_tx32_0 output from a coprocessor1 to the core is not defined on the
interface of the core, and can be left unconnected on the coprocessor.

The CP2_tdata_0[31:0] and the CP2_fdata_0[31:0] data buses are only 32 bits wide. 64-bit transfers are not sup-
ported.

The CP2_tordlim_0[2:0] input is ignored and the CP2_torder_0[2:0] output is tied to 0002, since the microAptiv UP
core never sends data out of order. The coprocessor attached to an microAptiv UP core does not need to limit the use
of out-of-orderness. This might not be true for other MIPS cores using the same interface. If a coprocessor is built
which does not allow data it receives to be sent out-of-order, then it can drive the CP2_tordlim_0[2:0] signal to 0002.

The CP2_fordlim_0[2:0] output is tied to 0012 and the CP2_forder_0[2:1] input is ignored. No more than one
out-of-order data return is supported. Only CP2_forder_0[0] is needed to define the out-of-orderness of the data
received from the coprocessor. If data is sent to the microAptiv UP core more than one out-of-order, then it would be
a protocol violation and the result from this is undefined.

The CP2_null_0 output is tied low (logic 0). With the microAptiv UP core, the only instruction that may be nullified
is an instruction in a branch likely delay slot (when the branch isn’t taken). The branch condition is evaluated so early
that dispatch of the delay slot instruction can be suppressed. The CP2_nulls_0 signal will still strobe once for each
instruction dispatched as required by the protocol. But no instruction is ever nullified.

1 Static signal from a coprocessor, used to indicate it can only handle 32-bit transactions.

 Coprocessor Interface

60 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Note: If the CP2_null_0 always being low when implementing the coprocessor is relied upon, then might not be com-
patible with future versions of the microAptiv UP or other MIPS cores.

The CP2_reset output is driven directly from a register. This register is driven by the internal reset, and clocked by
the core clock (SI_ClkIn after clock tree). This means that the assertion/deassertion is one cycle later than what the
core sees. This is not a problem as the first instruction after reset can never be a Coprocessor 2 instruction.

The CP2_present input determines the presence of a coprocessor. If this input is deasserted (logic 0), then the Copro-
cessor Interface is disabled. All inputs should be driven static to their inactive values, and all outputs must be ignored.
It is not possible to set the CU2 bit in the CP0 Status register if CP2_present is deasserted (0).

6.4 Interface Protocols

Refer to Table 2.3 for a complete listing of all the pins of the microAptiv UP core.

The Coprocessor Interface is composed of several simple transfers:

• Instruction Dispatch - Starts coprocessor instructions.

• To COP Data - Transfers data to the coprocessor.

• From COP Data - Transfers data from the coprocessor.

• Coprocessor Condition Code Check - Transfers coprocessor condition check result to the microAptiv UP core.

• Coprocessor Exceptions - Notifies the microAptiv UP core whether any coprocessor exceptions happened for
an instruction or not.

• Instruction Nullification - Notifies the coprocessor whether instructions are nullified or not.

• Instruction Killing - Notifies the coprocessor whether instructions can commit state or not.

All transfers use the following protocol:

• All transfers are synchronously strobed, that is, a transfer is only valid for one cycle (when the strobe signal is
asserted). The strobe signal is a synchronous signal and should not be used to clock registers.

• No handshake confirmation of transfer.

• Except for instruction dispatch, no flow control.

• Except for To/From COP data transfers, out of order transfers are not allowed. All transfers of a given type,
except To/From COP data transfers, must be in dispatch order.

• Ordering of different types of transfers for the same instruction is not restricted.

After an instruction is dispatched, additional information about that instruction must be later transferred between the
coprocessor and the microAptiv UP processor core. The additional information and the transfers required are summa-
rized in Table 6.2.

Note: For each dispatch type given in the table, all listed transfers are required to be completed. No transfers are
optional. however, after an instruction is killed or nullified, any additional transfers that have not already happened

6.4 Interface Protocols

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 61

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

will not occur. Once an instruction is killed or nullified, no further transfers for that instruction can happen. Addition-
ally, if an instruction is killed, then all transfers for all previously dispatched instructions will not happen either,
including instructions dispatched in the same cycle that the kill of an older instruction is sent.

Each transfer can occur as early as the cycle after dispatch, and there is no maximum limit on how late the transfer
can occur. Only the dispatch interfaces have flow control, so that once dispatched, all transfers can occur immedi-
ately.

All transfers are strobed. The data is not buffered and is transferred in the cycle that the strobe signal is asserted—if
the strobe signal is asserted for 2 cycles, then two transfers occur. For instruction dispatches (Arithmetic, To COP,
and From COP instructions) the strobe signal (CP2_as_0, CP2_ts_0 or CP2_fs_0) is asserted in the cycle after the
instruction is dispatched. This is done in order to insulate the strobe signals from poor timing. The dispatch cycle is
the cycle where the instruction bus CP2_ir_0[31:0] is valid.

Figure 6.1 General Transfer Example

Figure 6.1 above shows examples of the transfer of nullification information. All non-dispatch transfers follow the
same protocol.

On edge 4, CP2_nulls_0 is asserted, signifying the null transfer for instruction A. Since CP2_null_0 is deasserted on
edge 4, instruction A is not nullified. Instruction B is dispatched on edge 4 and it receives the null transfer in the next

Table 6.2 Transfers Required for Each Dispatch

Dispatch Type Required Transfers

To COP Op
(LWC2/ MTC2/

CTC2)

• Instruction nullification or not1

• To Coprocessor data transfer
• Coprocessor exceptions or not
• Instruction killing or not

1. The microAptiv UP core will always signal not-nullified on all instructions.

From COP Op
(SWC2/ MFC2/

CFC2)

• Instruction nullification or not1

• From Coprocessor data transfer
• Coprocessor exceptions or not
• Instruction killing or not

Arithmetic Op

(COP22)

2. For a description of this instruction, refer to the MIPS ISA definition.

• Instruction nullification or not1

• Coprocessor exceptions or not
• Instruction killing or not

Arithmetic Op,
Branch

(BC22)

• Instruction nullification1

• Condition code check results
• Coprocessor exceptions or not
• Instruction killing or not

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A CB

CP2_null_0

CP2_nulls_0

CP2_ir_0[31:0]

CP2_as_0

SI_ClkIn

CP2_irenable_0

 Coprocessor Interface

62 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

cycle at edge 5. Since it is the cycle after dispatch, this is the earliest possible time any transfer for instruction B could
happen.Instruction C is dispatched at edge 5. The nullification transfer is delayed for some reason until edge 10. In
this general example the instruction C is nullified. This will never happen on the microAptiv UP core, also the nullify
strobe is always send in the cycle after dispatch on the microAptiv UP core.

For all transfers except To COP Data and From COP Data, the ordering of the transfers is simple: all transfers of a
specific type (for example, nullification transfers) in a specific issue group must be in the same order as the order in
which the instructions were dispatched. Other kinds of transfers can be interspersed—for example, if four arithmetic
instructions were dispatched, there could be two nullification transfers, followed by four exception transfers, fol-
lowed by two nullification transfers.

Note: If an instruction is killed or nullified, no remaining transfers for that instruction occur. In the cycle that the
instruction is being killed or nullified, transfers may occur, but will be ignored. Additionally, if an instruction is
killed, all instructions dispatched after the killed instruction are also killed.

The Coprocessor Interface is designed to operate with coprocessors of any pipeline structure and latency; if the
microAptiv UP core requires a specific transfer by a certain cycle, then it will stall until the transfer has completed.

For transfers from the coprocessor to the integer unit, the allowable latencies are shown in Table 6.3. The “Stage
Needed” column shows the integer unit pipeline stage where the data is used; if data is not available by the end of this
stage, then the integer pipeline will stall. The “Min” column shows the minimum time after dispatch that the integer
unit can accept the data (always one cycle). The “Max” column shows the maximum time after dispatch that the inte-
ger unit could receive the data (always an infinite number of cycles). The “Max Without Stalling” column shows the
longest time after dispatch that the integer unit could receive the data without stalling.

Because of its pipeline structure, the microAptiv UP core does not generate all allowable latencies for transfers from
the integer unit to the coprocessor. Table 6.4 summarizes these latencies. The “Stage Sent” column shows the integer
unit pipeline stage in which the transfer is performed. The “Min” column shows the shortest amount of time after dis-

Table 6.3 Allowable Interface Latencies from a Coprocessor to the microAptiv UP Core

From To
Stage

Needed
Min

(cycles)
Max

(cycles)

microAptiv UP
Max

Without Stalling
(cycles)

Instruction Dispatch Coprocessor
Exceptions

M 1 ∞ 1

From COP Instruction Dis-
patch

From Coprocessor Data
Transfer

M 1 ∞ 1

Branch Instruction Dispatch Coprocessor
Condition Code Check

E1

1. The microAptiv UP cores does not have any branch prediction logic. Because of this, the new address (Branch taken or
not) must be available in the E stage in order to have the address ready for the instruction following the branch delay
slot.

1 ∞ -12

2. The minus one (-1) indicates that the Coprocessor 2 Branch instruction will always cause a minimum of two stall
cycles, while waiting for the Condition Code Check to be returned.

6.4 Interface Protocols

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 63

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

patch that the integer unit will send the data. The “Max” column shows the longest time after dispatch that the data
could be sent.

The “Max” latency is given in dispatches and thus defines the number of pending transfers to be made. It is the num-
ber of pending transfers that defines the interface logic required in the coprocessor.

6.4.1 Instruction Dispatch

This transfer is used to signal the coprocessor to start coprocessor instructions. Data transfer instructions include
those that move data to the coprocessor from the integer processor core (To COP Ops), and those that move data from
the coprocessor to the integer processor core (From COP Ops).

Because data transfers for the To COP and From COP instructions occur later than the dispatch of the instructions,
the coprocessor itself must keep track of data hazards and stall its pipeline accordingly. The integer processor core
does not track coprocessor data hazards.

In an microAptiv UP core, instructions are dispatched to the coprocessor in the last cycle of the E-stage of the integer
pipeline. Although the interface allows the coprocessor and integer pipelines to operate independently, it is important
that the dispatch occurs to both in the same cycle to ensure that all subsequent transfers are properly synchronized.
The microAptiv UP core may not dispatch a coprocessor instruction when the integer pipeline is stalled. This is nec-
essary to allow proper CP0 exception handling.

CP2_as_0, CP2_ts_0 and CP2_fs_0 are asserted in the cycle after the instruction is driven. These signals are delayed
strobe signals, and although this delay complicates the functional interface, it enables the processor to achieve very
good timing on these signals. Without this delay, these signals would have been timing-critical.

Because the above instruction strobes are delayed, the coprocessor would normally be required to register
CP2_ir_0[31:0] in every cycle and conditionally use it in the following cycle depending on the instruction strobes.
This protocol has the side effect of registering non-coprocessor instructions and partially processing them, thus
potentially increasing power consumption. The CP2_irenable_0 signal compensates for this effect by enabling the
coprocessor to avoid registering instructions that will never be dispatched to it. CP2_irenable_0 low guarantee that
this cycle is not a dispatch cycle. CP2_irenable_0 high (1) indicates that this cycle might be a dispatch cycle.
CP2_irenable_0 is a late signal, making its timing critical. It should only be used to drive the enable input of the
instructions latches.

Because of the tight relation between dispatch and required return from the coprocessor on the microAptiv UP core, it
is recommended to do some amount of instruction decode in the dispatch cycle, and latch this decode based on
CP2_irenable_0. This makes it more likely that data/exception returns from the coprocessor can be sent in the cycle
after dispatch, and provide stall free operation in the microAptiv UP core.

Only one instruction strobe can be asserted at one time: CP2_as_0, CP2_ts_0, and CP2_fs_0.

Table 6.4 Interface Latencies from the microAptiv UP Core to a Coprocessor

From To
Stage
Sent

Min
(cycles) Max

Instruction Dispatch Instruction Nullifi-
cation

E+1 11

1. The null strobe (CP2_nulls_0) is an OR function of the dispatch strobes (CP2_as_0, CP2_ts_0 and CP2_fs_0).

N/A

To COP instruction Dis-
patch

To Coprocessor
Data Transfer

A 2 1 dispatch later (2 outstanding transfers)

Instruction Dispatch Instruction Killing A+1~ 3 2 dispatches later (3 outstanding transfers)

 Coprocessor Interface

64 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

CP2_inst32_0 and CP2_endian_0 are both part of an instruction dispatch. They instruct the coprocessor to:

• work in MIPS32-compatibility mode (CP2_inst32_0 high)

• Handle internal byte/halfword coprocessor instructions as big-endian operations (CP2_endian_0 high)

Because the microAptiv UP core is a MIPS32-compatible core and does not support any MIPS64 specific features,
the signal CP2_inst32_0 is tied high (1).

The CP2_endian_0 signals are asserted during dispatch to notify the coprocessor of the proper byte-ordering mode to
use.

Figure 6.2 Instruction Dispatch Waveforms

Figure 6.2 shows example waveforms of four instruction dispatches.

• On edge 2, instruction A is dispatched. CP2_ir_0[31:0], CP2_inst32_0 and CP2_endian_0 are all valid and
CP2_irenable_0 is driven high to indicate that this might be a dispatch cycle. On edge 3, instruction A is strobed
as an arithmetic instruction by CP2_as_0.

• On edge 5, instruction B is valid on CP2_ir_0[31:0]. Instruction B is also an arithmetic instruction. because the
CP2_abusy_0 signal is detected high on edge 5, preventing arithmetic instruction strobes, the instruction is not
strobed on edge 6. On edge 8, CP2_abusy_0 is detected low, and the instruction is then strobed on edge 9 using
CP2_as_0.

• On edge 6 CP2_fbusy_0 was asserted. Because no From COP Op instruction was attempted dispatched in this
cycle this assertion is ignored.

• On edge 9, instruction C is dispatched. This is a From COP Op, requesting data from the coprocessor to be sent
to the microAptiv UP core. CP2_fbusy_0 is not driven high on edge 9, and thus instruction C is strobed on edge
10.

• On edge 12, instruction D is valid, and CP2_irenable_0 is driven high. Instruction D is a To COP Op instruction.
CP2_tbusy_0 is not asserted on edge 12, but for some internal reason in the microAptiv UP core. Instruction D is
not strobed until edge 14. On edge 14 CP2_tbusy_0 is driven high from the coprocessor, but this is too late to
prevent the instruction strobe on CP2_ts_0.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A

CP2_tbusy_0

CP2_abusy_0

CP2_ir_0[31:0]

CP2_as_0

SI_ClkIn

CP2_irenable_0

CP2_ts_0

CP2_fs_0

B C D

CP2_inst32_0

CP2_endian_0

CP2_fbusy_0

6.4 Interface Protocols

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 65

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

The CP2_abusy_0, CP2_tbusy_0 and CP2_fbusy_0 signals are the only means for the coprocessor to prevent the
microAptiv UP core to dispatch instructions. When dispatched, all subsequent transactions for each instruction can
happen immediately and the coprocessor must have buffers available to receive any information that might be trans-
mitted from the core to the coprocessor. The reason to have 3 different instruction strobes is to enable a coprocessor
to prevent one type of instruction

6.4.2 To Coprocessor Data Transfer

The Coprocessor Interface transfers data to the coprocessor after a To COP Op has been dispatched. Only To COP
Ops utilize this transfer. The coprocessor must have a buffer available for this data after the To COP Op has been dis-
patched. If no buffers are available, then the coprocessor must prevent dispatch by asserting CP2_tbusy_0.

The Coprocessor Interface allows out-of-order data transfers. Data can be sent to the coprocessor in a different order
from the order in which the instructions were dispatched. When data is sent to the coprocessor, the CP2_torder_0[2:0]
signal is also sent. This signal tells the coprocessor if the data word is for the oldest outstanding To COP data transfer
or the second oldest. The coprocessor can prevent the microAptiv UP from reordering To COP Data by driving
CP2_tordlim_0[2:0] to 0002.

Note: The microAptiv UP never sends data out of order. Thus CP2_torder_0[2:0] is tied to 0002 and
CP2_tordlim_0[2:0] is ignored.

Only word transfers are supported and the data is sent on CP2_tdata_0[31:0].

The integer unit can transfer data to the coprocessor in the cycle after it is received from the memory subsystem. In
the event of a cache miss, this can potentially happen many cycles after dispatch.

Figure 6.3 To Coprocessor Data Waveforms

Figure 6.3 shows waveforms for 3 To COP Op instructions and the data transfer associated with this instruction. On
edges 2, 4 and 5 the To COP Op instructions A, B and C respectively are dispatched to the coprocessor. Because they
are To COP Ops, the CP2_ts_0 strobe is used to strobe the instruction dispatch.

On edge 5, the data associated with instruction A is valid. This is indicated by the CP2_tds_0 driven high (1).
Because CP2_torder_0[2:0] is 0002 ties the data to the oldest outstanding To COP Op, which is instruction A.

On edge 6, data for instruction B is valid. This is the earliest after dispatch, that data will be sent from the microAptiv
UP core. The interface must however support data to be sent as early as the cycle after dispatch (edge 5 for instruction
B) to be compliant with other MIPS cores using the Core Coprocessor Interface.

Data for instruction C is not sent until edge 12. This could be due to a data-cache miss, but could have many other
microAptiv UP core internal reasons. The Coprocessor must support any cycle delay from instruction dispatch to data
transmit on To COP Ops.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CiBi

CP2_torder_0[2:0]

CP2_tdata_0[31:0]

CP2_ir_0[31:0]

CP2_ts_0

SI_ClkIn

CP2_tds_0

Ai

CdBdAd

000

 Coprocessor Interface

66 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

6.4.3 From Coprocessor Data Transfer

The Coprocessor Interface transfers data from the coprocessor to the integer processor core after a From COP Op has
been dispatched. Only From COP Ops utilize this transfer. Note that the microAptiv UP core has buffers for this data
that enables the transfer to occur as early as the cycle after dispatch.

The Coprocessor Interface allows out-of-order transfer of data. That is, data can be sent from the coprocessor in a dif-
ferent order from the order in which the instructions were dispatched. When data is sent from the coprocessor, the
CP2_forder_0[2:0] signal is also sent. This signal tells the integer processor core if the data is for the oldest outstand-
ing From COP data transfer or the second oldest. The microAptiv UP core supports a maximum of 1 out-of-order
transfer and drives CP2_fordlim_0[2:0] = 1 0012.

Note: It is illegal for a coprocessor to drive CP2_forder_0[2:0] > 1 0012.

Only word transfers are supported, and the data must be sent on CP2_fdata_0[31:0].

For both memory stores (SWC2) and move instructions (MFC2/CFC2), the integer pipeline can stall if data is not
available by the M stage. This is because the data to be stored/moved to a register is needed early in the following
A-stage. By receiving the data in the M-stage, the Coprocessor Interface can have non-critical timing.

Figure 6.4 From Coprocessor Data Waveforms

Figure 6.1 shows example waveforms for 4 From COP Op instructions, and the data transfer associated with these
instructions. On edge 2, 4, 5 and 9 the From COP Ops A, B, C and D respectively are dispatched from the integer
core. They are all From COP Ops, thus CP2_fs_0 is used to strobe the instruction.

On edges 5 and 6, data for instruction A and B are returned from the coprocessor. The data is returned in order of
instruction dispatch, and CP2_forder_0[2:0] is consequently driven to 0002. Data for instruction B is sent in the cycle
after dispatch. This is needed to ensure stall free operation in the microAptiv UP core. The data for instruction A is
one cycle delayed, causing one stall cycle in the microAptiv UP core.

On edge 11, data for instruction D is returned to the integer core. This is the second oldest outstanding data transfer,
CP2_forder_0[2:0] is driven to 10012 to indicate one out of order in the data transfer.

On edge 12, the data for instruction C is finally returned. CP2_forder_0[2:0] is driven to 0 0002 because this is the old-
est outstanding data transfer.

6.4.4 Condition Code Checking

The Coprocessor Interface provides signals for transferring the result of a condition code check from the coprocessor
to the integer processor core. Only BC2 instructions utilize this transfer. These instructions are dispatched to both the
integer processor core and the coprocessor.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CiBi

CP2_forder_0[2:0]

CP2_fdata_0[31:0]

CP2_ir_0[31:0]

CP2_fs_0

SI_ClkIn

CP2_fds_0

Ai

BdAd

00

Di

0

CdDd

1

6.4 Interface Protocols

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 67

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

For each instruction dispatched, a result is sent back to the integer processor core that says whether or not to take the
branch.

For this reason, the coprocessor must interpret the type of instruction to decide whether or not to execute it. Cus-
tomer-defined BC2 instructions are thus possible. Four main flavors of BC2 instructions exists (BC2T, BC2TL,
BC2F and BC2FL). The integer core does not care if it is a True or False branch. It will only distinguish between a
branch and a branch likely type instruction. The coprocessor is the unit that determines if the branch should be taken
or not. A taken branch is indicated by asserting the condition code check CP2_ccc_0 = 1. The not taken branch is
indicated by CP2_ccc_0 = 0.

With the microAptiv UP core, the address of the second instruction following a branch is calculated in the branch
instruction’s E-stage, which is the dispatch stage. The condition contributes to the address calculation. The BC2
instruction is dispatched to the coprocessor, but stalled in the IU’s E-stage until the coprocessor returns the condition
result.

The condition code check from the coprocessor is registered on the input to the microAptiv UP core. The values are
not available until the cycle after return from the coprocessor.

Note: The microAptiv UP core always stalls for a minimum of 2 cycles in E-stage for any BC2 instruction sent to the
coprocessor.

Figure 6.5 Condition Code Check Waveforms

Figure 6.5 shows an example waveform for two BC2 instructions. BC2 instructions belong to the arithmetic COP Op
group of instructions and the dispatch is thus strobed using the CP2_as_0 strobe.

On edges 2 and 6, BC2 instructions are dispatched from the integer unit. The condition code check for instruction A
is returned as fast as possible, which is on edge 3. This means that the stall penalty was kept at the minimum of 2
cycles. CP2_ccc_0 is set (12) indicating to the integer core to go ahead and take the branch.

On edge 11, condition code for instruction B is returned. The four cycle extra delay means that the microAptiv UP
core will stall for a minimum of 6 cycles for this BC2 instruction. CP2_ccc_0 is driven low indicating to the integer
core that the branch is not to be taken.

6.4.5 Coprocessor Exceptions

All instructions dispatched utilize this transfer. It is used to signal if an instruction caused an exception in the copro-
cessor. This transfer must happen even if the instruction did not cause an exception in the coprocessor.

When a coprocessor instruction causes an exception, the coprocessor must signal this to the integer processor core so
it can start execution from the exception vector. The coprocessor can signal a Reserved Instruction exception (RI) for
any instruction dispatched.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A B

CP2_ccc_0

CP2_cccs_0

CP2_ir_0[31:0]

CP2_as_0

SI_ClkIn

 Coprocessor Interface

68 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Signalling for Reserved Instruction exceptions is divided between the integer processor core and the coprocessor as
follows:

• The integer processor core signals Reserved Instruction exceptions for non-arithmetic coprocessor instructions
that are not valid To COP Ops or From COP Ops:

• (IR[31:26] = 0100102) & (IR[25:24] = 002) & (IR[22:21] = 112): Reserved To/From COP Ops.

• (IR[31:26] = 0100102) & (IR[25:24] = 002) & (IR[22:21] = 012): unimplemented DMFC2/DMTC2 COP
Ops.

• (IR[31:30] = 112) & (IR[28:26] = 1102): unimplemented LDC2/SDC2.

• The coprocessor hardware must signal Reserved Instruction exceptions for all unimplemented arithmetic copro-
cessor instructions:

• (IR[31:26] = 0100102) & (IR[25] = 12) & (IR[24:0] = unimplemented COP2 instruction)

• (IR[31:26] = 0100102) & (IR[25:24] = 012) & (IR[23:21] = unimplemented Branch instruction).

Note: The microAptiv UP core does not dispatch the instructions that it is responsible for RI exception signaling.
This might not be the case for other integer cores featuring this interface. In this case, the instruction can always later
be nullified or killed. A fully compliant coprocessor must be able to handle this and is allowed to signal no-exception
on these instructions.

The coprocessor should only signal Coprocessor 2 exceptions (C2E) for any implemented COP2 instruction which
has an execution problem. All unimplemented legal COP2 instructions should signal an RI exception.

Note: For imprecise exceptions, the exception sent is not related to the current instruction, the C2E exception can
only be sent on dispatched COP Ops that are NOT part of the instructions that the integer core are guaranteed to sig-
nal RI as defined above.

The coprocessor may also signal an implementation-specific exception code (IS1). This exception code can be used
to trigger special software exception handling routines. A special handler can be started quicker as the exception han-
dler does not need to read a specific coprocessor Cause register, as might be needed on the general C2E exception.
The rules for C2E exceptions also apply to IS1 exceptions.

Note: A coprocessor can signal an exception for all To/From COP Ops. An exception on a To/From COP Op cannot

depend on the associated data, except for the data sent from the integer core on a CTC2 instruction2.

The integer processor core detects Coprocessor Unusable exceptions for all coprocessor instructions.

The microAptiv UP core needs the exception transfer for all instructions in the M-stage to avoid stalling. It must sig-
nal exceptions in the first cycle of the A-stage, and will stall in the M-stage if it has to wait for the transfer.

If imprecise coprocessor exceptions are allowed, then the coprocessor can use the “No exception” signal immediately
after dispatch. This will prevent stalling in the integer pipeline while waiting for precise results; if an exception does
occur for that instruction, then a subsequent coprocessor instruction can be flagged as exceptional (although impre-
cise), or else an interrupt could be signalled through the normal integer processor core interrupt inputs (SI_Int[5:0]).

2 Exception based on the data sent on a CTC2 is possible if the control value written indicates that the instruction should always
cause exception.

6.4 Interface Protocols

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 69

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 6.6 Exception Waveforms

Figure 6.6 shows example waveforms for an exception return from three coprocessor instructions. In this example,
the exception returns are all arithmetic COP Ops, and CP2_as_0 is used to strobe the dispatch.

On edges 2, 6 and 7, instructions A, B and C respectively are dispatched. A is an unimplemented arithmetic instruc-
tion, causing a Reserved Instruction exception (RI). B is an implemented arithmetic instruction, as is C, but some
errors occurred while executing the instruction, causing a C2E exception.

On edge 3, an RI exception for instruction A is returned to the integer core. CP2_excs_0 set (12) signals that the
CP2_exc_0 is valid. CP2_exc_0 driven high (12) signals that a valid exception is on CP2_exccode[4:0]. Refer to
Table 2.3 for descriptions of the valid exception bit values.

On edge 9, no exception is returned for instruction B. On edge 11, the C2E exception for instruction C is returned to
the integer core.

6.4.6 Instruction Nullification

All instructions dispatched utilize this transfer. Used to signal if an instruction was nullified in the integer processor
core, this transfer happens even if an instruction was not nullified so that the coprocessor knows when it can begin
operation of subsequent operations that depend on the result of the current instruction.

Normally, an instruction is killed only when the pipeline is being flushed because an exception occurred. In this case,
all subsequent instructions in the pipeline (both coprocessor and integer core pipelines) are also killed. An instruction
may also be killed because it is in the delay slot of a branch-likely instruction that did not branch. This type of killing
is called instruction nullification. In this case, subsequent instructions in the pipeline are unaffected by the nullifica-
tion.

Nullification must be performed in an early stage of the pipeline to ensure that subsequent instructions can begin with
the correct operands.

In the cycle that an instruction is nullified, other transfers for that instruction may still occur, but no further transfers
for that instruction can occur in subsequent cycles. Exceptions caused by a nullified instruction are masked by the
integer processor core.

Note: The microAptiv UP core never nullifies an instruction. No nullify is always transferred in the cycle after dis-
patch.

Nullification transfers follow the generic example given in Figure 6.1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A

CP2_exc_0

CP2_excs_0

CP2_ir_0[31:0]

CP2_as_0

SI_ClkIn

CP2_exccode_0[4:0]

B C

RI C2E

 Coprocessor Interface

70 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

6.4.7 Instruction Killing

All instructions dispatched utilize this transfer. This is used to signal if an instruction can commit state or not. This
transfer happens even if an instruction is not being killed so that the coprocessor knows when it can writeback results
for the instruction.

Due to various exceptional conditions, any instruction may need to be killed. The integer processor core contains
logic which tells the coprocessor when to kill coprocessor instructions.

When a coprocessor instruction is being killed because of a coprocessor-signalled exception, the coprocessor may
need to perform special operations. For example, if an arithmetic COP2 instruction signalled a C2E exception, then
later is killed due to this exception. Some internal status bits might need to be updated before clearing the pipe. On
the other hand, if that same instruction was killed because of a higher priority exception, those status bits must not be
updated. For this reason, as part of the kill transfer, the integer processor core tells the coprocessor if the instruction is
killed due to a coprocessor-signalled exception or not.

When a coprocessor instruction is killed, all subsequent coprocessor instructions that have been dispatched are also
killed. This is necessary because the killed instruction(s) may affect the operation of subsequent instructions (for
example, because of bypassing). In the cycle in which an instruction is killed, other transfers may occur, but after that
cycle, no further transfers occur for any of the killed instructions. A side-effect of this is that the other instructions
that are killed do not have a kill transfer of their own. In effect, they are immediately killed and thus their remaining
transfers cannot be sent, including their own kill transfer. Previously nullified instructions do not have a kill transfer
either, because once nullified, no further transfers can occur.

Note: If the integer processor core dispatches a coprocessor instruction in the same cycle that a kill is being signalled
to the coprocessor, then that instruction is also considered killed.

The integer unit knows in an instruction’s A stage whether the instruction is to be killed or not. In order to avoid crit-
ical timing signals being passed directly to the coprocessor, the integer unit will register its A stage kill signal before
sending it to the coprocessor.

Figure 6.7 Instruction Killing Waveforms

Figure 6.7 shows example waveforms for instruction killing.

On edges 2, 6 and 7, instructions A, B and C are dispatched.

On edge 5, instruction A is notified of a no-kill. This instruction can now commit internal state and register writes in
the coprocessor.

On edge 12, instruction B is killed. The value of (102) on CP2_kill_0[1:0], indicates that the instruction was not killed
due to an exception sent by itself. Instruction B therefore does not commit any state or register bits in the coprocessor.
If CP2_kill_0[1:0] was (112), then the B instruction could commit state bits, indicating the cause of the exception it
sent (not shown).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A

CP2_kills_0

CP2_ir_0[31:0]

CP2_as_0

SI_ClkIn

CP2_kill_0[1:0]

B C

0 2

6.5 Power Saving Issues

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 71

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Instruction C never gets a CP2_kills_0 strobe, because the killing of instruction B also killed instruction C. An indi-
rectly killed instruction like instruction C can never commit any state or register bits in the coprocessor.

6.5 Power Saving Issues

The power saving issues have already been touched on in the previous sections. This section specifies what to do and
what not to do in order to minimize power dissipation in the microAptiv UP core and the coprocessor.

6.5.1 No Coprocessor Present

If a hard-core version of the microAptiv UP core is being used that includes the Coprocessor Interface, but there is no
plan to connect a coprocessor to the core, then the following must be observed:

• Tie CP2_present low (0). Tying this input low, will prevent any use of the Coprocessor Interface.

• Tie all strobe inputs (CP2_fds_0, CP2_cccs_0 and CP2_excs_0) low (0). If the microAptiv UP core is imple-
mented using gated clocks on local registers, then the strobe inputs on each bus are used as the enable signal in
the clock gating logic for the input capture registers.

• Tie all other inputs to a static value. All other inputs are ignored, when CP2_present is low (0).

The above rules are very simple to implement. Tie all CP2_xx and CP2_xx inputs to the microAptiv UP core low (0)
if there is no coprocessor attached to the integer core.

6.5.2 How to Use CP2_idle

CP2_idle is an input to the microAptiv UP core. When a coprocessor is attached to the core, it is important to use this
input properly in order for the WAIT instruction to work effectively.

The WAIT instruction enables power saving features within the microAptiv UP core. When WAIT is executed, the
microAptiv UP core will stall the front of the pipe, and wait for all older instruction and pending bus activity to com-
plete. Once this is detected, all but about one hundred flops have their clock gated off via one top-level clock gating
circuit. The only way to reawaken the core is to signal an interrupt on SI_Int[5:0], SI_NMI or EJ_DINT, or by resetting
the core using SI_Reset or SI_ColdReset.

While the WAIT instruction ensures that no new instructions go down the pipe in the integer core, nothing is implic-
itly done to tell the coprocessor to prepare for a possible stopping of its clock. This is where the CP2_idle signal is
used. The coprocessor must assert this signal high whenever no instruction execution occurs within the coprocessor.
CP2_idle is part of the logic that determines when the top level clock gating element can turn off the clock. If this sig-
nal is deasserted then the clock will never be gated off in the microAptiv UP core, and the whole purpose of the
WAIT instruction is lost. The CP2_idle input is ignored when CP2_present is low.

It is important to note that the CP2_idle input cannot be used to reawaken the microAptiv UP core. After the WAIT
instruction has actively stopped the main clock to most of the microAptiv UP core flops, a deassertion of CP2_idle
will restarts this clock but leaves the processor issuing NOPs down the pipe. The coprocessor cannot awaken the core
by deasserting CP2_idle. If some external source requires service from either the integer core or the coprocessor (via
the integer core), then this external source must assert an interrupt directly to the microAptiv UP core.

 Coprocessor Interface

72 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

6.5.3 Gating the Clock to the Coprocessor

For power reasons, the designer of the coprocessor is encouraged to use a top-level clock gater on the clock tree dis-
tributed within the coprocessor. The microAptiv UP core has an output, SI_Sleep, which indicates when the internal
clock in the integer core is stopped. Figure 6.8 shows an example of how to implement and control a top-level clock
gater in the coprocessor.

Figure 6.8 Use of SI_Sleep for Clock-Gating in the Coprocessor

6.5.4 Using Strobe Signals as Gating Inputs on the Sub-interfaces

Each of the sub-interfaces of the Coprocessor Interface has a strobe signal associated with it.

Figure 6.9 shows how this strobe signal can be used as the enable input to a clock gater driving the clock to the corre-
sponding data portion of the interface. The “To Data” interface is shown as an example. Instruction nullification and
instruction killing can use the same scheme, but the low number of bits in the data portion of these two sub-interfaces
might not make it worth the effort.

The instruction dispatch interface is different as its strobe signals arrive one cycle after the instruction word.

Figure 6.9 Clock-Gating of To Data Registers in Coprocessor

microAptiv UP

Clock Input

SI_Sleep

Coprocessor

SI_ClkIn

System Clock

Clock Gate

Clock gater

ClkIn

Enable

ClkOut

Clock to
coprocessor

Core COP
I/F

Coprocessor

CP2_tdata_0[31:

CP2_torder_0[2:0

CP2_tds_0

Clock gater

ClkIn

Enable

ClkOut

Coprocessor Clock

ToDataValid

ToData

ToDataOrder

D Q

D Q

D Q

6.6 Template for Coprocessor Modules

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 73

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 6.10 shows the intended use of CP2_irenable_0. CP2_irenable_0 is used only as a gated-clock enabling signal
when the clock-gating on the capture of the instruction word is introduced. For all other purposes, the CP2_as_0,
CP2_ts_0 and CP2_fs_0 are the true qualifiers for a valid instruction.

Figure 6.10 Clock Gating of Instruction Registers in Coprocessor

The Pre-decoding block in Figure 6.10 represents combination logic before the receiving flops for the instruction reg-
ister. This block is most likely needed before the Instruction register if stall-free operation on coprocessor instructions
in the microAptiv UP core is to be maintained. Refer to Table 6.4, for information on allowable latencies to maintain
stall-free operation.

6.6 Template for Coprocessor Modules

A template for coprocessor 2 modules is included in the soft core release. This template provides a simple implemen-
tation of Cop2 interface logic. It can be used as is for many coprocessor designs or can be used as a reference for
designing coprocessor interface logic. There is an application note, Core Coprocessor 2 Module Template Applica-
tion Note [11] in the $MIPS_PROJECT/doc directory as well as RTL in the
$MIPS_PROJECT/design/modules/user/cop2_syn directory.

Coprocessor

CP2_ir_0[31:0]

CP2_as_0

Clock gater

ClkIn

Enable

ClkOut

Coprocessor Clock

InstructionValid

Instruction

CP2_irenable_0

Pre decoding

CP2_ts_0

CP2_fs_0

D Q

 Coprocessor Interface

74 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Chapter 7

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 75

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Scratchpad RAM Interface

The Scratchpad RAM (SPRAM) option on a MIPS32® microAptiv UP core is designed to provide low-latency
access to on-chip memories. SPRAM is supported for both instruction and data references. The SPRAM ports are
accessed in parallel with the caches. This saves a number of cycles that would normally be required going through the
BIU and the AHB-Lite interface.

The pin list associated with the SPRAM interface was introduced in Chapter 2, “Signal Descriptions” on page 11.
This chapter contains further details about the use of the SPRAM interface in a system and is specific to the microAp-
tiv UP core, organized into the following major sections:

• Section 7.1, "SPRAM Features"

• Section 7.2, "SPRAM Overview"

• Section 7.3, "SPRAM Interface Transactions"

• Section 7.4, "External Access to Scratchpad Memory"

• Section 7.5, "SPRAM Initialization"

• Section 7.6, "Using the Same Design for ISPRAM and DSPRAM"

•

7.1 SPRAM Features

SPRAM combines some features of main memory and caches. SPRAM has the following features:

• A SPRAM data array can be up to 1MB in size, much larger than the maximum 64KB cache size.

• There are separate interfaces to instruction SPRAM (ISPRAM) and data SPRAM (DSPRAM). The presence of
SPRAM on the I-side or D-side can be independently configured.

• The ISPRAM and DSPRAM interfaces are not completely symmetric. There are no stores to the ISPRAM, so
this asymmetry saves some pins.

• A full tag array is not needed for SPRAM. The equivalent tag functionality is normally replaced by a simple
decode of the physical address to determine hit or miss.

• The cache way-select (WS) array is not needed for SPRAM.

• An SPRAM port logically replaces one way of a cache. If both SPRAM and cache are present, then the maxi-
mum cache associativity is 3.

 Scratchpad RAM Interface

76 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

• SPRAM can be mapped to either cached or uncached space. The address decode and comparison for SPRAM
will be performed regardless of the cacheability attribute. When Instruction SPRAM can service uncached refer-
ences, enabling processor boot with no AHB-Lite interface accesses.

• Backstalling. The SPRAM port can stall the core if the SPRAM array was busy the previous cycle or if data is
not ready. This can enable other sources to access the SPRAM without the need for dual-porting the array. This
is useful, for example, if there is a DMA engine filling the SPRAM or if a unified I/D SPRAM is desired. A
cache, in contrast, has fixed single-cycle timing.

• Optional parity protection is supported for SPRAM. For DSPRAM, one parity bit is implemented for every 8 bits
of data. For ISPRAM, one parity bit is implemented for every 8 bits of instruction opcode.

• The microAptiv UP core provides a single-cycle latency SPRAM implementation with BIST support.

7.2 SPRAM Overview

A block diagram of a basic microAptiv UP system with SPRAM functionality is shown in Figure 7.1.

The SPRAM interface is designed to be flexible enough to work with a variety of system designs. A variety of mem-
ory devices can be connected to the SPRAM interface: SRAM, ROM, flash, etc. If desired, memory-mapped func-
tions can also be connected, as long as the interface protocol is met. Multi-ported devices can also be used; in this
case, the ISPRAM or DSPRAM interface is logically connected to just one of the ports, with other system logic unre-
lated to the microAptiv UP core utilizing the other port(s).

Figure 7.1 Basic SPRAM Block Diagram

The SPRAM array effectively replaces a cache way and is always located at the last cache way. A SPRAM array can
be used with or without caches. If caches are present in conjunction with SPRAM, then the maximum cache associa-
tivity is 3. The existence of an ISPRAM or DSPRAM interface must be selected at build time for the microAptiv UP
core. Even if selected at build time, an SPRAM device need not be connected to the interface. In this case, the
SPRAM-related core input pins should be tied off to 0.

The SPRAM array, like the cache arrays, is indexed with a virtual address and the “tag” comparison (really just
decode logic for an SPRAM) is performed using a physical address. Note that because the SPRAM “way” can be
larger than the 1KB minimum page size, it is possible to have virtual aliasing in the SPRAM.(The potential aliasing
issue exists only in TLB-mapped regions with the microAptiv UP core). Virtual aliasing occurs when a single physi-

microAptiv UP DSPRAMISPRAM

DSPRAM i/fISPRAM i/f

AHB-Lite i/f

7.2 SPRAM Overview

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 77

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

cal address is accessed via two different virtual addresses that can simultaneously be resident in memory. This is not
handled by the hardware and programmers must be aware of it.

During normal operation, it will be impossible for a reference to hit in both the SPRAM and cache. If this error con-
dition does occur via manipulation of the cache or SPRAM tags, the cache overrides the SPRAM and the SPRAM hit
indication is ignored.

7.2.1 SPRAM Differences From a Cache

SPRAM behaves much like a cache way, with a few exceptions:

• Software must ensure a SPRAM entry has been initialized before it is read, to avoid reading spurious data.

• ISPRAM never refills automatically. To move instructions into the SPRAM, software must use the CACHE
instruction.

• DSPRAM does not fill automatically, either. It should normally be initialized with stores to the address range.

• Store operations which hit in the DSPRAM do not produce writes to main memory, unlike write-through stores
that hit in the cache and write to main memory.

• The SPRAM array is not required to hold the last read value.

7.2.2 Independent Tag/Data Accesses

The D-side SPRAM interface has independent tag and data ports. This is done to aid the efficiency of stores. A store
must perform a lookup to determine if/where to write the data, then the actual data must be written. Because the
lookup does not need to access the data array, these operations can occur in parallel if the data writes are buffered
within the core, as described further in Section 7.2.4, "Delayed Stores".

The data scratchpad port can accommodate either no parity or one bit of parity per byte. There is a 4-bit parity bus
between the scratchpad RAM and the processor; when no parity is implemented or the parity is disabled, the parity
busses are ignored.

Many of the signals on the SPRAM interface apply to only one of the tag/data accesses, while others apply to both.
Table 7.1 shows which signals are related to tag access, data access, or both and when they are logically valid.

Table 7.1 SPRAM Interface Cycle Timing

Signal Name Port Dir.

Typical
Timing,
as % of

min.
cycle Validity relative to strobes/stalls

ISP_Addr Both Out 80 This is valid during the cycles that RdStr, TagWrStr, or DataWrStr are asserted. If
Stall is asserted, this value will be held until the cycle that Stall is deasserted.

ISP_RdStr Both Out 90 Asserted when tag and data lookups are being performed.

DSP_TagAddr Tag Out 80 This is valid during the cycle that TagRdStr or TagWrStr is asserted. If Stall is
asserted, this value will be held until the cycle that Stall is deasserted.

DSP_TagRdStr Tag Out 90 Asserted when a tag lookup is being performed

 Scratchpad RAM Interface

78 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

{I,D}SP_TagWrStr Tag Out 90 Asserted when a CACHE instn is writing the tag - note: this will never be asserted in
the cycle after TagRdStr/RdStr to avoid a conflict on TagCmpValue

DSP_TagCmpValue Tag Out 40 For reads, this is valid the cycle after TagRdStr/RdStr. If Stall is asserted, this value
will be held until the cycle after Stall is deasserted.
For writes, this is valid the same cycle as TagWrStr.

DSP_DataAddr Data Out 80 This is valid during the cycle that DataRdStr or DataWrStr is asserted. If Stall is
asserted the following clock, this value will be held until the cycle that Stall is
deasserted.

DSP_DataWrValue Data Out 80 This is valid in the same cycle that DataWrStr is asserted. If Stall is asserted the
following clock, this value will be held until the cycle that Stall is deasserted.

ISP_DataTagValue Data Out 40 This is valid in the same cycle that DataWrStr is asserted. If Stall is asserted the
following clock, this value will be held until the cycle that Stall is deasserted.

Tag Out 40 For reads, this is valid the cycle after TagRdStr/RdStr. If Stall is asserted, this value
will be held until the cycle after Stall is deasserted.
For tag writes, this is valid the same cycle as TagWrStr.

{I,D}SP_DataRdStr Data Out 90 Asserted when a data read is being performed - this will never be asserted unless
TagRdStr is also asserted.

{I,D}SP_DataWrStr Data Out 90 Asserted when a data write is being performed. DSP_DataWrStr may be asserted with
all 0’s on DSP_DataWrMask and no write should occur.

DSP_DataWrMask Data Out 80 Valid when DataWrStr is asserted.

{I,D}SP_ParityEn Data Out Static Static configuration output.

ISP_WPar Data Out 40 This is valid in the same cycle that DataWrStr is asserted. If Stall is asserted the
following clock, this value will be held until the cycle in which Stall is deasserted

DSP_Lock Both Out 90 Asserted to indicate a lock access of a RMW sequence raised by an atomic instruction
to DSPRAM space. The lock signal is valid since DSP_TagRdStr and DSP_DataRdStr
are asserted and will be held until DSP_DataWrStr is also asserted. The signal will
also be deasserted when Read operation is missed in DSPRAM.

DSP_WPar Data Out 80 This is valid in the same cycle that DataWrStr is asserted. If Stall is asserted the
following clock, this value will be held until the cycle in which Stall is deasserted

{I,D}SP_DataRdVal
ue

Data In 60 For single cycle access, read data should be returned the cycle after DataRdStr/RdStr
is asserted. For multi-cycle accesses, read data should be returned in the same cycle
that stall is deasserted.

{I,D}SP_TagRdValu
e

Tag In 70 For single cycle access, tag value should be returned the cycle after TagRdStr/RdStr
is asserted. For multi-cycle accesses, tag value should be returned in the same cycle
that stall is deasserted.

{I,D}SP_Hit Tag In 60 For single cycle access, this should be valid the cycle after TagRdStr/RdStr is asserted.
For multi-cycle accesses, this should be valid in the same cycle that Stall is deasserted.

Table 7.1 SPRAM Interface Cycle Timing (Continued)

Signal Name Port Dir.

Typical
Timing,
as % of

min.
cycle Validity relative to strobes/stalls

7.2 SPRAM Overview

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 79

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

7.2.3 Timing Considerations

The SPRAM interface, unlike the other external interfaces on an microAptiv UP core, is not fully registered; how-
ever, all signals are synchronous to the rising edge of the primary core clock, SI_ClkIn. Outputs on the SPRAM inter-
face may have a significant amount of logic after the preceding flop(s), and inputs may go through some
combinational logic before being registered by the core. This situation complicates timing analysis associated with
the core, but is necessary in order to achieve maximum performance of the interface.

The expression of timing constraints for the SPRAM interface depends on many factors, such as maximum target fre-
quency, process technology, standard cell library characteristics, setup and access times for the SPRAM array, etc., so
it is difficult to provide a generic set of timing guidelines that will apply in all situations. The “Typical Timing” col-
umn in Table 7.1 shows the timing of SPRAM interface signals, expressed as a percentage of the minimum target
period, since most users are usually interested in achieving the maximum possible frequency of the core.

Many of the outputs arrive late in a cycle, so the external SPRAM block can’t perform much additional logic on them
in the cycle they are driven, without adversely affecting the overall cycle time of the core. The *_Hit and especially
*_Stall signals are critical inputs to the core. Care must be taken in the amount of logic performed by the external
SPRAM block when driving these signals. For example, stall generation based on the decoding of the physical
address (DSP_TagCmpValue or ISP_DataTagValue) is probably not possible if maximum frequency is desired. For
lower target frequencies, of course, the timing constraints shown in Table 7.1 can be relaxed.

7.2.4 Delayed Stores

A store buffer exists within the core for holding the last store data. Due to the separate tag and data accesses described
in Section 7.2.2, "Independent Tag/Data Accesses", the store data written to the DSPRAM data array is actually for
the previous store, while the “tag” address is for the current store. This means that the DSPRAM data array for a spe-
cific store is not guaranteed to be written until the next store is executed in the pipeline. During cycles in which the
DSPRAM is otherwise idle, pending store data can be written with no corresponding tag access. If the store buffer is
empty when the current store is processed, then only the “tag” transaction will occur.

{I,D}SP_Stall Both In 40 The Stall signal can be related to either Tag or Data access. Because both Tag and Data
accesses can occur at the same time, the input should be the OR of both Tag and Data
stall sources.

Tag Should be asserted in the cycle after TagRdStr/RdStr if hit determination cannot be
returned or tag value is not available. Remains asserted until the lookup can be
completed. It is not possible to stall a tag write.

Data Should be asserted in the cycle after DataRdStr/RdStr if read data cannot be returned.
Remains asserted until the read data is available.
Should be asserted in the cycle after DataWrStr if the data write has not been
completed.

{I,D}SP_Present Both In Static Static configuration input

{I,D}SP_ParPresent Data In Static Static configuration input

{I,D}SP_RPar Data In 60 For single-cycle accesses, parity for read data should be returned the cycle after
DataRdStr/RdStr is asserted. For multi-cycle accesses, parity for read data should be
returned in the same cycle that stall is deasserted.

Table 7.1 SPRAM Interface Cycle Timing (Continued)

Signal Name Port Dir.

Typical
Timing,
as % of

min.
cycle Validity relative to strobes/stalls

 Scratchpad RAM Interface

80 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

7.2.5 Tag Reads and Writes

The interface allows for “tag” values to be read and written. This capability is not used in normal operation. The tag
values are read/written by the CACHE instruction. This can optionally provide a mechanism for software to deter-
mine the SPRAM configuration and change it. The reference design shows one possible use for this interface - soft-
ware can probe the SPRAM to determine the base address and whether it is enabled. These values are also write-able,
allowing software to dynamically configure the SPRAM parameters. A more complex SPRAM could use tag values
at multiple indexes to encode even more configuration information.

7.2.6 Backstalling the SPRAM Interface

The normal cache interface has fixed single-cycle timing. Both the I- and D-side SPRAM interfaces allow the
SPRAM to backstall the core if it is busy, via assertion of the {I,D}SP_Stall signal. This mechanism may be used to
support multi-cycle timing on the SPRAM interface. For example, the backstall mechanism could allow a single-port
SRAM to arbitrate between the core access and an external interface.

The following considerations should be noted when using the backstalling capability:

• When {I,D}SP_Stall is asserted, the {I,D}SP_Hit signal is ignored by the core.

• The {I,D}SP_Stall signal is a timing-critical input to the core. Care should be taken when creating the
{I,D}SP_Stall signal, as it feeds into the main pipeline stall logic and must be valid approximately halfway into
the cycle. The stall signal is also used asynchronously by the core to prevent the next access from occurring, and
to conditionally hold some interface signals valid from the prior request. For these reasons, the {I,D}SP_Stall tim-
ing is generally more critical than {I,D}SP_Hit. In low-frequency applications, the stall signal may be generated
combinationally, based on the physical address presented on the DSP_TagCmpValue or ISP_DataTagValue
buses; for timing reasons, however, this is not recommended when maximum core frequency is desired. For max.
frequency, it is recommended to derive the stall signal from the strobes and index address asserted in the previ-
ous cycle, as well as the fact that some external device is using the SPRAM array in the current cycle.

• If {I,D}SP_Stall is asserted for an address that hits in the cache, the cache hit is preserved but the core pipeline
will be needlessly stalled as long as {I,D}SP_Stall is asserted.

• Refer to Table 7.1 for a description of how core outputs behave when stall is asserted. The strobe signals are not
held asserted by the core during a stall. The address and write values are held valid during a stall, for the related
tag or data port that is active. For example, if a read transaction is occurring on the tag port but the data port is
idle, then the address and/or write value associated with the tag port will be held valid during a stall, but the
addresses or write value on the data port is “don’t care” data and may change during the stall sequence.

7.2.7 Access Granularity

The widths of the data bus for read and write requests to SPRAM are shown in Table 7.2. A read always returns a
word (32 bits) of data. The core internally handles any alignment necessary for sub-word read requests, like byte
loads or microMIPS instruction fetches.

Table 7.2 Read and Write Width for SPRAM Arrays

Array
Max Read Width

(bits)
Min Read Width

(bits)
Max Write Width

(bits)
Write Granularity

(bits)

ISPRAM 32 32 32 32

DSPRAM 32 32 32 8

7.2 SPRAM Overview

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 81

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Writes to ISPRAM are always a full word. The maximum width of DSPRAM writes is a word, but one, two, or three
bytes can be written as well. The byte lanes to be written to DSPRAM are controlled by the DSP_DataWrMask[3:0]
bus, as shown in Table 7.3; when a bit in DSP_DataWrMask is high, the corresponding byte from DSP_DataWrValue
should be written to the array.

7.2.8 Write Strobe with 0 Write Mask

On the DSPRAM interface, the write strobe must be qualified with the write mask. It is possible for the write strobe
to be asserted with a value of all 0’s on the write mask. Not qualifying the write strobe allows it to come out a little
earlier in the cycle. With typical byte-write SRAMs, it is legal to send a write strobe with a 0 mask, but it may con-
sume additional power. To minimize power consumption or connect to atypical devices, these signals can be gated
within the SPRAM module.

7.2.9 Unified I/D SPRAM

Separate interfaces are provided from the core to I- and D-side SPRAM. It is possible to create a shared I/D SPRAM,
if desired. A unified SPRAM could allow a system to dynamically share the same memory array between the needs of
instruction and data, as compared to the build-time partitioning which must be done for the separate Harvard-style
interfaces.

If a unified SPRAM is desired, the existing I and D SPRAM interfaces on the core would need to be brought into a
common external block, as illustrated in Figure 7.2. Since I and D requests can occur in the same cycle, a method to
handle simultaneous requests will be required. A dual-ported memory could be used to handle simultaneous I/D
requests. With a single-ported memory, the backstalling mechanism described previously is one way the I/D prioriti-
zation could be achieved.

Table 7.3 Byte Control for DSPRAM Writes

DSP_DataWrMask
bit asserted

DSP_DataWrValue
bits to be written

[0] [7:0]

[1] [15:8]

[2] [23:16]

[3] [31:24]

 Scratchpad RAM Interface

82 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 7.2 Unified I/D SPRAM Block Diagram

7.2.10 Restartability of SPRAM Accesses

The location of the SPRAM interface within the pipeline has some implications related to events which may cause an
transaction to be replayed. Exceptions that occur late in the pipeline, after the SPRAM access has already occurred,
can cause the instruction which caused the access to be killed and possibly re-executed at a later point in time,
depending on the exception handler. Examples of such exceptions include interrupts, bus errors, and EJTAG or
Watch breakpoints. These exception are detected after the SPRAM access has occurred, but the exception PC will
point to the instruction which caused the access, or perhaps even a preceding instruction. Hence, the SPRAM
accesses will generally need to be restartable, so the SPRAM device must be capable of re-playing the read or write
after the exception has been processed. Care must be taken for memory-mapped devices which may be attached to the
SPRAM interface, so they can handle the potential replay of a read or write access.

7.2.11 Connecting I/O Devices to the Scratchpad Interface

In addition to, or perhaps instead of, an SRAM array, it is possible to connect I/O devices to the SPRAM interface.
Connecting I/O devices to the cache interface allows low latency, high throughput access to critical I/O devices in the
system. To accomplish this, the implementor must ensure that the behavior of the I/O devices meets the same require-
ments as the SPRAM. In particular, I/O devices connected to the SPRAM port must be capable of re-playing reads
and writes with no adverse effects, as described in Section 7.2.10, "Restartability of SPRAM Accesses".

7.2.12 Null Connection to Unused SPRAM Interface

The presence of ISPRAM and/or DSPRAM interfaces must be chosen when the core is built. Even if the SPRAM
interface is present, there need not be a device connected to it. If the interface is not to be used, then the
{I,D}SP_Present input signal to the core should be driven low. All other input signals to the core for the unused
SPRAM interface should also be tied low, to avoid floating inputs. All output signals from the core related to the
unused SPRAM interface can be left unconnected.

microAptiv UP

Unifed
I/D

SPRAM

DSPRAM i/f

ISPRAM i/f

AHB-Lite i/f

7.3 SPRAM Interface Transactions

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 83

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

7.3 SPRAM Interface Transactions

Strobe signals on the SPRAM interface determine the type of transaction that is active. In general, there are indepen-
dent interfaces for “tag” accesses and “data” accesses. For some transaction types, both the tag and data interfaces are
used to process the same request. In other cases, the tag and data interfaces may process unrelated requests.

Table 7.4 shows the type of transaction indicated by the tag/data read/write strobe signals. All four strobes are present
on the DSPRAM interface. On the ISPRAM interface, there are three strobes: a single read strobe and separate
tag/data write strobes. Note that some strobe combinations never occur.

This remainder of this section contains timing diagrams for typical read and write transactions to SPRAM. Since the
DSPRAM interface is a superset of the ISPRAM interface, the diagrams only depict DSPRAM transactions. The rela-
tionship of interface signals which are only present on the DSPRAM interface to the ISPRAM is discussed in Section
7.6, "Using the Same Design for ISPRAM and DSPRAM" on page 94.

7.3.1 Single Read

Figure 7.3 shows the timing diagram for a single SPRAM read. This scenario can occur for the following conditions:

• data load to DSPRAM

• instruction fetch to ISPRAM

• CACHE read (index load tag to either SPRAM or a fill lookup to ISPRAM)

• store address lookup to DSPRAM, when no previous store data is pending (in this case DSP_TagRdStr will
assert, but DSP_DataRdStr will not)

Table 7.4 SPRAM Transaction Types

DataWrStr TagWrStr TagRdStr DataRdStr Transaction Type

0 0 0 0 No access

X 0 0 1 Not possible

0 0 1 0 DSPRAM: Store address lookup with no data write

0 0 1 1 ISPRAM: Instruction fetch or CACHE read (fill or index load
tag)
DSPRAM: Load or CACHE read (index load tag)

0 1 0 0 CACHE write (index store tag)

0 1 0 1 Not possible

0 1 1 X Not possible

1 0 0 0 ISPRAM: CACHE write (index store data)
DSPRAM: Idle cycle store or CACHE write (index store data)

1 0 1 0 ISPRAM: Not possible
DSPRAM: Store lookup with store data write

1 0 1 1 Not possible

1 1 X X Not possible

 Scratchpad RAM Interface

84 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

The microAptiv UP core initiates the read by asserting read strobe signals (DSP_TagRdStr, DSP_DataRdStr) and by
driving a valid index on the address busses (DSP_TagAddr, DSP_DataAddr) during cycle 1. Typically, these signals
are used by synchronous logic in the external DSPRAM block to perform a read on the rising edge of cycle 2. Also
during cycle 2, the physical address for tag comparison (DSP_TagCmpValue) is driven by the core.

The external DSPRAM block uses the strobe and address information driven by the core to determine that the address
is indeed within the range mapped by the SPRAM array, and that the requested read data can be returned immedi-
ately. Thus, the external logic asserts DSP_Hit and deasserts DSP_Stall in cycle 2, while driving the read data on bus
DSP_DataRdValue. For the minimum read response, the hit and stall signals must be signalled combinationally after
performing a tag comparison on the physical address provided on bus DSP_TagCmpValue. The external logic might
also return tag read data associated with a CACHE instruction request, on bus DSP_TagRdValue, if that is relevant
for the SPRAM implementation.

Figure 7.3 Single DSPRAM Read

7.3.2 Single Multi-Cycle Read

Figure 7.4 shows the timing diagram for a single DSPRAM multi-cycle read, and illustrates the back-stalling capabil-
ity of the interface. This is similar to the single-cycle read case described in Section 7.3.1, "Single Read", but now the
external SPRAM logic was unable to immediately service the read request.

The read request is initiated by the core in cycle 1 by driving read strobes and index addresses. In cycle 2, however,
the SPRAM access cannot be completed for some reason, so the external logic responds by asserting DSP_Stall. The
value driven on DSP_Hit is ignored by the core whenever stall is asserted. The stall indication is used combinationally

Clock #

clk

DSP_DataRdStr

DSP_DataAddr[19:2]

DSP_Hit

1 2 3 4 5 6 7 8

DSP_DataWrStr

DSP_DataWrMask[3:0]

DSP_DataWrValue[31:0]

DSP_DataRdValue[31:0]

DSP_Stall

DSP_TagCmpValue[23:0]

DSP_TagWrStr

DSP_TagRdStr

DSP_TagAddr[19:4]

DSP_TagRdValue[23:0]

Valid

Valid

Valid

Valid

Valid

7.3 SPRAM Interface Transactions

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 85

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

by the core to hold the index addresses valid for the original request. In this case, stall is asserted for two cycles, and
is finally deasserted in cycle 4. During cycle 4, the SPRAM array access proceeds, and external logic asserts hit and
drives the requested read data.

Note that while stall is asserted, the index and tag addresses are held by the core, but the strobe signals are not. The
core will never assert another strobe request while stall is asserted.

Figure 7.4 Single Multi-Cycle DSPRAM Read

7.3.3 Single Write

Figure 7.3 shows a timing diagram for a single store to the DSPRAM. In cycle 1, a tag lookup is initiated to determine
if the store is writing to the DSPRAM. In cycle 2, the DSPRAM indicates that the access did hit via DSP_Hit. The
store data is held in an internal store buffer and is written to the DSPRAM at a later time when the data port is free.
This can occur as soon as cycle 2, but could also be delayed for any number of cycles due to other activity. In this
waveform, DSP_DataWrStr becomes active in cycle 3 to write the data into the SPRAM array.

This shows a write due to a store instruction. If the write was caused by a CACHE instruction, the data write in cycle
3 could occur without the initial tag read.

Clock #

clk

DSP_DataRdStr

DSP_DataAddr[19:2]

DSP_Hit

1 2 3 4 5 6 7 8

DSP_DataWrStr

DSP_DataWrMask[3:0]

DSP_DataWrValue[31:0]

DSP_DataRdValue[31:0]

DSP_Stall

DSP_TagCmpValue[23:0]

DSP_TagWrStr

DSP_TagRdStr

DSP_TagAddr[19:4]

DSP_TagRdValue[23:0]

Valid

Valid

Valid

Valid

Valid

 Scratchpad RAM Interface

86 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 7.5 Single DSPRAM Write

7.3.4 Single Multi-Cycle Write

Figure 7.6 shows the timing diagram for a single DSPRAM multi-cycle write, and illustrates the back-stalling capa-
bility of the interface. This is similar to the single-cycle write case described in Section 7.3.3, "Single Write", but now
the external SPRAM logic was unable to immediately service either the tag read or the data write associated with the
write request.

The core initiates the tag read in cycle 1, by driving the tag read strobe and the address. In cycle 2, the core drives the
tag compare data, but the external DSPRAM logic is unable to complete the lookup, so it asserts DSP_Stall. The tag
lookup continues until DSP_Stall is deasserted in cycle 4. A hit is indicated and the core immediately begins the data
write phase by driving the data write strobe, index address, store data, and byte mask. Again, the external DSPRAM
logic is unable to process the write during cycle 5, so it responds by asserting DSP_Stall, in this case for two cycles.
The core holds the address, store data, and byte mask valid while the stall signal is asserted. During cycle 7, the write
could proceed, and the external logic then deasserts stall to complete the write transaction.

Clock #

clk

DSP_DataRdStr

DSP_DataAddr[19:2]

DSP_Hit

1 2 3 4 5 6 7 8

DSP_DataWrStr

DSP_DataWrMask[3:0]

DSP_DataWrValue[31:0]

DSP_DataRdValue[31:0]

DSP_Stall

DSP_TagCmpValue[23:0]

DSP_TagWrStr

DSP_TagRdStr

DSP_TagAddr[19:4]

DSP_TagRdValue[23:0]

Valid

Valid

Valid

Valid

Valid

Valid

7.3 SPRAM Interface Transactions

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 87

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 7.6 Single Multi-Cycle DSPRAM Write

7.3.5 Simultaneous Tag Read and Data Write

Table 7.7 presents a transaction in which a write to the data interface occurs at the same time as a read to the tag inter-
face. This is an extension to the data write-only transaction discussed in Section 7.3.3, "Single Write", but is a typical
occurrence to DSPRAM, when an address transaction occurs for the current store instruction, while store data from a
previous DSPRAM hit is simultaneously presented to the data array. This situation never occurs to ISPRAM.

The core initiates the transaction in cycle 1, by asserting the tag read strobe (DSP_TagRdStr) and data write strobe
(DSP_DataWrStr). On the data interface, the data index address, data value, and byte mask, all corresponding to the
prior store which hit in the DSPRAM, are also driven in cycle 1. On the tag interface, tag index address for a new
store is driven in cycle 1, while the physical address for that store is driven in cycle 2.

The external DSPRAM logic is able to process both the tag and data transactions during cycle 2, so it asserts hit
(DSP_Hit) based on a successful physical address comparison, and deasserts stall (DSP_Stall), thereby completing
both the tag and data portions of the transaction. The tag read value (DSP_TagRdValue) is also shown as being driven
valid in cycle 2. This value is probably not relevant for this type of store transaction, but the external logic may
choose to always drive this bus in response to the tag read strobe for simplicity.

Note that the interface does not permit the tag read and data write transactions to be completed independently, since
there is a single stall signal. The external DSPRAM block must complete both operations in cycle 2, or assert stall to
complete them in a later cycle.

Clock #

clk

DSP_DataRdStr

DSP_DataAddr[19:2]

DSP_Hit

1 2 3 4 5 6 7 8

DSP_DataWrStr

DSP_DataWrMask[3:0]

DSP_DataWrValue[31:0]

DSP_DataRdValue[31:0]

DSP_Stall

DSP_TagCmpValue[23:0]

DSP_TagWrStr

DSP_TagRdStr

DSP_TagAddr[19:4]

DSP_TagRdValue[23:0]

Valid

Valid

Valid

Valid

Valid

 Scratchpad RAM Interface

88 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 7.7 Combined DSPRAM Tag Read and Data Write

7.3.6 Back-to-Back Reads

The SPRAM interface is fully pipelined, and any combination of the previously introduced single-transactions can be
combined in consecutive cycles. The core will never initiate a new transaction whenever stall is asserted, however.

Figure 7.8 shows two back-to-back read transactions. Each individual transaction looks like the single-cycle read
introduced in Section 7.3.1, "Single Read".

Clock #

clk

DSP_DataRdStr

DSP_DataAddr[19:2]

DSP_Hit

1 2 3 4 5 6 7 8

DSP_DataWrStr

DSP_DataWrMask[3:0]

DSP_DataWrValue[31:0]

DSP_DataRdValue[31:0]

DSP_Stall

DSP_TagCmpValue[23:0]

DSP_TagWrStr

DSP_TagRdStr

DSP_TagAddr[19:4]

DSP_TagRdValue[23:0]

DA1

DV1

DM1

TA2

TC2

TV2

7.3 SPRAM Interface Transactions

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 89

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 7.8 Consecutive DSPRAM Reads

7.3.7 Read-Write-Read Sequence

Figure 7.9 depicts a three transaction sequence, consisting of a single-cycle read, followed by a data store (with
simultaneous tag read) that is stalled for two cycles, and finally followed by another single-cycle read.

The first and last reads are like single-cycle read described in Section 7.3.1, "Single Read". The data store is derived
from the single-cycle transaction introduced in Section 7.3.5, "Simultaneous Tag Read and Data Write", but the com-
pletion has been stalled for two additional cycles.

Clock #

clk

DSP_DataRdStr

DSP_DataAddr[19:2]

DSP_Hit

1 2 3 4 5 6 7 8

DSP_DataWrStr

DSP_DataWrMask[3:0]

DSP_DataWrValue[31:0]

DSP_DataRdValue[31:0]

DSP_Stall

DSP_TagCmpValue[23:0]

DSP_TagWrStr

DSP_TagRdStr

DSP_TagAddr[19:4]

DSP_TagRdValue[23:0]

DA0 DA1

TA0 TA1

TC0 TC1

D0 D1

TV0 TV1

 Scratchpad RAM Interface

90 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 7.9 Read-Write-Read

7.3.8 Read-Modified-Write Sequence (Locked transfers)

7.3.8.1 RMW Operation Hit in DSPRAM

Figure 7.10 shows a locked transfer for an RMW sequence caused by an atomic instruction accessing DSPRAM. The
read request of the atomic instruction is initiated by the core in cycle 1 by driving read strobes and index addresses. In
the same cycle, DSP_Lock is asserted to lock the DSPRAM access. At cycle 4, the SPRAM array access proceeds,
and external logic asserts hit and drives the requested read data. Then the write request of the atomic instruction is
sent to the DSPRAM interface by driving the write strobes and index addresses in cycle 5. DSP_Lock is held until the
write strobe is asserted.

Clock #

clk

DSP_DataRdStr

DSP_DataAddr[19:2]

DSP_Hit

1 2 3 4 5 6 7 8

DSP_DataWrStr

DSP_DataWrMask[3:0]

DSP_DataWrValue[31:0]

DSP_DataRdValue[31:0]

DSP_Stall

DSP_TagCmpValue[23:0]

DSP_TagWrStr

DSP_TagRdStr

DSP_TagAddr[19:4]

DSP_TagRdValue[23:0]

DA1

TC1

DA0 DA3

TA1 TA2 TA3

TC2 TC3

DM0

DV0

TV1 TV3

D1 D3

TV2

7.3 SPRAM Interface Transactions

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 91

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 7.10 A complete RMW operation

7.3.8.2 A Store Operation to DSPRAM in the RMW Sequence

As shown in Figure 7.11, the write operation is normally buffered in the store buffers instead of immediately being
sent out on the bus. So it is possible to have a write operation in the middle of a RMW sequence. In cycle 4, a store
instruction prior to the atomic instruction has its write access to the DSPRAM in the middle of the RMW sequence.

Clock #

clk

DSP_DataRdStr

DSP_DataAddr[19:2]

DSP_Hit

1 2 3 4 5 6 7 8

DSP_DataWrStr

DSP_DataWrMask[3:0]

DSP_DataWrValue[31:0]

DSP_DataRdValue[31:0]

DSP_Stall

DSP_TagCmpValue[23:0]

DSP_TagWrStr

DSP_TagRdStr

DSP_TagAddr[19:4]

DSP_TagRdValue[23:0]

Valid

Valid

Valid

Vaid

Valid

Valid

DSP_Lock

Vaid

 Scratchpad RAM Interface

92 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 7.11 A Store operation followed by an atomic operation in DSPRAM access

7.3.8.3 RMW operation does not hit in DSPRAM

The lock sequence is terminated when the read operation of a RMW sequence is missed in the DSPRAM as shown in
Figure 7.12. DSP_Lock signal is deasserted when DSPRAM deasserts both DSP_HIT and DSP_Stall in cycle 4.

Clock #

clk

DSP_DataRdStr

DSP_DataAddr[19:2]

DSP_Hit

1 2 3 4 5 6 7 8

DSP_DataWrStr

DSP_DataWrMask[3:0]

DSP_DataWrValue[31:0]

DSP_DataRdValue[31:0]

DSP_Stall

DSP_TagCmpValue[23:0]

DSP_TagWrStr

DSP_TagRdStr

DSP_TagAddr[19:4]

DSP_TagRdValue[23:0]

DA1

TC1

D1

TV1

DSP_Lock

TA1

DA0 DA1

DM0 DM1

D0 D1

7.4 External Access to Scratchpad Memory

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 93

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 7.12 RMW Operation does not hit in DSPRAM

7.4 External Access to Scratchpad Memory

A system design may desire access to the SPRAM by a source external to the core, referred to as a backdoor. Creat-
ing such an external access path quickly becomes a system architecture issue which is beyond the scope of this docu-
ment, but here are a few methods which could be considered:

1. Use the back-stalling capability of the SPRAM interface to allow arbitration between the core and a back-door to
a single-ported SRAM, as shown in Figure 7.13. The arbitration logic can back-stall the core by asserting
{I,D}SP_Stall when the core attempts an access at the same time as an external device.

2. Use a true dual-ported SRAM. The core can use one port, and the backdoor can use the other. Software only has
to ensure that the same address is not written on both ports at the same time.

3. Split the SPRAM into two or more banks. Under software control, the backdoor could then gain access to one
bank, while the core accesses the other(s). This method might also be combined with the backstalling capability,
but stalls should be less frequent.

Clock #

clk

DSP_DataRdStr

DSP_DataAddr[19:2]

DSP_Hit

1 2 3 4 5 6 7 8

DSP_DataWrStr

DSP_DataWrMask[3:0]

DSP_DataWrValue[31:0]

DSP_DataRdValue[31:0]

DSP_Stall

DSP_TagCmpValue[23:0]

DSP_TagWrStr

DSP_TagRdStr

DSP_TagAddr[19:4]

DSP_TagRdValue[23:0]

Valid

Valid

Valid

Valid

DSP_Lock

Valid

 Scratchpad RAM Interface

94 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 7.13 External Access to Single-ported SPRAM

7.5 SPRAM Initialization

If the scratchpad is really a RAM-based structure, then it must be initialized with valid data before it can be used.
There are several standard mechanisms to handle this. One or more of these options should be available depending on
your system.

• CACHE fill instruction: In general, executing the Fill version of the CACHE instruction forces a refill of the
cache from main memory. If the reference hits in the cache, the fill will go to the same way to avoid a conflict.
This mechanism works for the SPRAM as well: if the reference hits in the SPRAM, the cache controller will try
to fill to the SPRAM way. The CACHE Fill instruction is only available for the I-cache (and thus ISPRAM) and
it requires backing memory at the SPRAM address, since the fill will be serviced via the AHB-Lite interface.

• Stores: For DSPRAM, the array can be initialized with normal store instructions that hit in the SPRAM region.

• CACHE Index Store Data instruction: Indexed cache operations can be forced to go to the SPRAM by setting the
SPR bit in the Coprocessor0 ErrCtl register. When this bit is set, it is possible to use the Index Store Data flavor
of the CACHE instruction to move data from the DataLo Cop0 register into the SPRAM. This mechanism does
not require any backing memory and can even be used to load the SPRAM from an EJTAG probe for early sys-
tem bringup. This method can be used for either the ISPRAM or DSPRAM, although using stores to initialize
DSPRAM is much more efficient. It is recommended that all SPRAM implementations support this method in
addition to any other loading mechanisms.

• Backdoor port: If there is an external DMA port into the SPRAM, then the system can load data directly into the
array. This can be done while holding the core in reset or by backstalling any core references to the SPRAM.
This would work for either an I-side or D-side SPRAM.

7.6 Using the Same Design for ISPRAM and DSPRAM

In order to minimize the number of pins on the external interface, the I-side and D-side SPRAM interfaces are not
identical. The I-side is more constrained in the type of possible writes, so several of the busses are shared. For design
reuse considerations, it may be desirable to only develop one SPRAM module and use it on both ports. The common
module should have all of the ports for the DSPRAM. Table 7.5 shows how ISPRAM signals should be connected to
appropriate DSPRAM ports.

From microAptiv

arbitration
logic

External source SPRAM
array

read data

7.7 Multiple SPRAM Regions

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 95

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

7.7 Multiple SPRAM Regions

It is possible to map multiple SPRAM regions into a single SPRAM block. Note, however, that the entire array is
indexed with a virtual address. This places constraints on the virtual addresses associated with the given regions. This
may in turn place constraints on the physical address of the region.

Figure 7.14 shows 3 regions within a single memory array. Several of the bits of the VA are fixed for each region.
Figure 7.15 shows 2 regions built in separate arrays. In this case, only one bit of the virtual address is fixed. For
region 0, VA<11> can be either 0 or 1. Using PA<11> in the hit determination will select one of the two spots and
leave a hole in the other one.

Figure 7.14 Multiple SPRAM Regions

Table 7.5 ISPRAM Connection to DSPRAM Ports

DSPRAM Port ISPRAM Port Description

DSP_DataAddr ISP_Addr[19:2] The I-side Tag and Data ports share the same address.

DSP_TagAddr ISP_Addr[19:4]

DSP_TagRdStr ISP_RdStr Both Tag and Data are always read at the same time on the I-side.

DSP_DataRdStr ISP_RdStr

DSP_TagCmpValue ISP_DataTagValue[23:0] This bus is shared on the I-side because only one of the following actions
can occur in any given cycle: Data write, tag write, or tag compare

DSP_DataWrValue ISP_DataTagValue[31:0]

DSP_DataWrMask 4’hf On an I-side data write, all 4 bytes of the given word will always be written
at the same time.

Virtual Index
<12:2>

Region0 - 2K

Region 1- 2K

Region 2- 4K

Region 0 always accessed with
VA<12:11> = 00b
Region 1- VA<12:11> = 01b
Region 2- VA<12> = 1b

 Scratchpad RAM Interface

96 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 7.15 Multiple SPRAM Regions in Separate Arrays

7.8 Implementation Recommendations

The SPRAM interface provides a great deal of flexibility. That flexibility can make it difficult for standard toolchains
and debuggers to work with the SPRAM. By adhering to a few standard features, that interface can be made simpler
and may have better tool support.

This section provides examples of configuring the SPRAM. To obtain the best optimized results, users must develop
an SPRAM design specific to the application .

7.8.1 Software-visible Configuration Information

Using the CACHE instruction, it is possible to read or write the ‘tag’ value associated with the SPRAM. To provide a
common software interface, it is recommended that all SPRAM implementations provide some standard configura-
tion information via this mechanism.

If the SPR bit in the ErrCtl register is set, an Index Load Tag CACHE instruction will read the SPRAM tag and place
the contents in the TagLo register. The index value (bits 19:4) will be passed to the SPRAM block which is used to
select between different configuration registers. These are the recommended read values that will allow identification
of a SPRAM consisting of one or more blocks of memory. Additional configuration information can be stored in
unused fields or unused indices. If there is a hole in the virtual address space in the SPRAM, other discontiguous
regions should have their own ID registers and be marked as not valid/enabled.

The tag read value for the first index in a region should be the following:

[23:2] PA - bits [31:10] of base address for memory region
[0] Valid - memory region is enabled

The tag read value for the second index in a region should be:

Region 0- 2K Region 1- 4K

Virtual Index
<12>

Virtual Index
<11:2>

Virtual Index
<10:2>

Region 0 - VA<12> = 0b
Region 1 - VA<12> = 1b

Region0 ?- 2K

Region 0?- 2K

Region 1- 4K

7.8 Implementation Recommendations

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 97

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

[23:2] PA - size of memory region (number of 16B lines)
[0] Valid - unused

Using the size information, software can determine the first index associated with the following memory region. This
chain can be followed in a linked list fashion until all memory regions have been identified. The end of the list can be
indicated by one of three values in the next set of registers.

1. Size = 0

2. PA/Size = PA/Size of previous region

3. PA/Size = PA/Size of first region

Method one is preferable, but the second and third methods can be used to reduce the amount of hardware required
for generation of the tag read values.

Here’s an example showing the tag registers associated with 3 discontiguous SPRAM regions:

16KB region at PA: 0x0000_0000
16KB region at PA: 0x0080_0000
64KB region at PA: 0x0001_0000

Tag 0 - {22’h0, 1’h0, 1’h1}
Tag 1 - {22’h400, 2’h0}
Tag 1024 - {22’h2000, 1’h0, 1’h1}
Tag 1025 - {22’h400, 2’h0}
Tag 2048 - {22’h40, 1’h0, 1’h1}
Tag 2049 - {22’h1000, 2’h0}
Tag 6144 - {24’h0}
Tag 6145 - {24’h0}

Note that these bits will be remapped to the format of the TagLo register:

TagLo Register Format

7.8.2 Region Sizes

Note that the encoding described in Section 7.8.1, "Software-visible Configuration Information" imposes restrictions
on the size of memory regions within the SPRAM. Also, if integrated BIST is configured for SPRAM, a minimum of
4KB size SPRAM is required.

7.8.3 Unique Addresses

In order to provide a simple programming interface, it is recommended that if ISPRAM and DSPRAM are simulta-
neously present, they should have unique addresses and do not overlap. If there is backing memory for the SPRAM
regions, the same address can exist in both SPRAM and main memory, but otherwise it should not.

31 16 15 10 9 8 7 6 1 0

PA 0 V 0 P

 Scratchpad RAM Interface

98 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

MIPS TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

7.8.4 Support ISPRAM Writes

In a very simple system, the data write port on the ISPRAM seems extraneous. This write port can, however, be used
by a CACHE Index Store Data instruction to manipulate the contents of the ISPRAM. One case where this could be
helpful is when debug software inserts breakpoints in the instruction stream.

7.8.5 Virtual Aliasing

When placing SPRAMs in an address region that is mapped via the TLB, there is a potential problem with virtual
aliasing. The SPRAM is virtually indexed and physically tagged. A virtual address is used to index into the SPRAM
and the following cycle, a physical address is presented for the hit determination.

Virtual aliasing is possible. This is the condition where one physical address can exist in different memory locations
if it is accessed with different virtual addresses. This can be avoided by using a page size the same size or larger than
the SPRAM, or by forcing a 1-1 VA-PA translation on bits used to index the SPRAM.

7.8.6 SPRAM Parity Support

Parity protection is optionally enabled for SPRAM. A parity error on a SPRAM read will cause a CacheErr exception
(for a load or fetch). The CacheErr parity error detection logic resides in the core. For the reference design, if parity is
enabled, it must be supported by the instruction cache, data cache and both SPRAM arrays.

From the reference SPRAM module, the outputs DSP_ParPresent and ISP_ParPresent indicate whether each SPRAM
array is parity protected. If a custom SPRAM module is built, users might choose not to check parity for SPRAM
even though parity checking for instruction and data caches is enabled; in this case, the output should be de-asserted
and no parity checking will be done for that SPRAM.

Chapter 8

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 99

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Clocking, Reset, and Power

This chapter describes the clocking and initialization interface on a MIPS32 microAptiv UP processor core, when the
core is integrated into a system environment. The power-reduction features available on an microAptiv UP core are
also discussed.

This chapter contains the following sections:

• Section 8.1 “Clocking”

• Section 8.2 “AHB Bus Clock”

• Section 8.3 “Reset and Hardware Initialization”

• Section 8.4 “Power Management”

8.1 Clocking

There are potentially two input clocks that must be generated and driven to an microAptiv UP core. The main clock
input is named SI_ClkIn, and exists on every microAptiv UP core. An optional clock input is called EJ_TCK, and is
only present if an EJTAG TAP controller is implemented within the core. Both clocks are used internally at 1x their
respective input frequencies; no frequency multiplication or division is performed internally. No phase-locked loop is
present within the microAptiv UP core. Typically no minimum frequency is required, so the frequency of the input
clocks can be quickly changed or stopped if desired, as long as edge rate integrity is maintained.

The following discussion describes general clocking characteristics of a typical microAptiv UP core implemented
with a standard ASIC physical design methodology. It is possible that a specific hard core implementation may differ
from the general clock guidelines discussed here; e.g., dynamic circuit implementation techniques may mandate that
a minimum clock frequency be met for a particular hard core. So the general clocking assumptions described here
must be validated for the specific microAptiv UP core that is being integrated before proceeding with system clock
design.

8.1.1 SI_ClkIn Clock

SI_ClkIn is the primary 1x input clock to the microAptiv UP core and is used to enable the vast majority of sequential
logic, as well as time the synchronous SRAMs normally used to implement the caches, within the microAptiv UP
core.

Only the positive edge of the SI_ClkIn clock is used internally to the core, so there is no specific duty cycle require-
ment. Transparent-low latches usually do exist within the core, so the duty cycle should still be within 40-60% of the
period. Since no dynamic logic or PLL is present, the minimum frequency is 0 MHz; i.e., SI_ClkIn can be stopped if
desired. The maximum SI_ClkIn frequency depends on the specific microAptiv UP core implementation.

 Clocking, Reset, and Power

100 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

8.1.2 EJ_TCK Clock

EJ_TCK is an optional 1x clock input to the microAptiv UP core, only existing if the core implements an EJTAG
TAP controller. EJ_TCK is the test input clock used to synchronize the serial shifting of data into and out of the TAP
controller. The EJ_TCK clock is completely asynchronous to the SI_ClkIn clock, in terms of both frequency and
phase.

The minimum frequency of EJ_TCK is 0 MHz, and can be stopped when the TAP controller is not used. The maxi-
mum frequency is specified as 40 MHz (25 ns period), due to limitations of the probes that usually interface to the
EJTAG TAP port. Both the rising and falling edges of EJ_TCK are used to control flops. The minimum clock high
and low times are specified as 10 ns, yielding a duty cycle requirement of 40 to 60% at 40 MHz.

8.1.3 Handling Clock Insertion Delay

When an microAptiv UP core is implemented, clock trees are usually created to buffer and distribute the SI_ClkIn and
EJ_TCK clocks throughout the core. These clock trees impart a finite delay from the primary clock inputs to the even-
tual usage of the buffered clocks at the sequential elements within the core. The exact amount of clock insertion delay
is a characteristic of each specific microAptiv UP core implementation.

The clock insertion delay presents an issue that must be managed when the microAptiv UP core is instantiated in the
rest of the system. Any clock insertion delay from the clock input to the actual clock usage at the sequential elements
for the primary inputs and outputs of the core reduces the primary input setup times, but increases the input hold
times as well as the clock-> out delays on the primary outputs. Since most microAptiv UP core inputs are received
directly by flops, and most core outputs come directly from flops, the setup and hold times for the primary inputs and
outputs can be balanced at the system level.

Several different techniques can be used to manage the microAptiv UP core’s internal clock insertion delay:

• Tolerate the core clock insertion delay at the system level, if possible, within the system logic that interfaces to
the microAptiv UP core. This may entail adding delay elements when driving inputs, so hold times are not vio-
lated, and receiving “late” outputs, reducing the number of logic stages that can exist in the same cycle the out-
puts are driven since the clock insertion delay is visible. This may not be acceptable for all system designs, but is
usually the simplest approach.

• When creating the system clock tree for the sequential logic that interfaces to the microAptiv UP core, match this
system clock to the core’s internal insertion delay. Clock tree generation tools have the ability to match relative
clock delays, so knowing the core’s internal clock insertion delay will allow the internal clocks to be specified as
matching points (within reasonable skew limits). With this approach, input hold times and output delays can be
minimized which allows more time in the cycle for useful work.

• Use the SI_ClkOut reference clock. SI_ClkOut is an output of the microAptiv UP core that is tapped from the
internal clock tree so that it is identical (within reasonable skew limits) to the clock seen by the sequential ele-
ments within the microAptiv UP core. The difference between SI_ClkIn and SI_ClkOut represents the clock inser-
tion delay of the primary clock used within the microAptiv UP core. (Note that there is no corresponding
reference clock output for the EJ_TCK clock, so this technique cannot be applied to that clock domain.) Due to
loading limitations, the SI_ClkOut clock probably can’t be used directly to control system logic that interfaces to
the core, but it can be used, for example, as the reference clock to a de-skewing phase-locked loop in the system
to “hide” the core’s clock insertion delay.

Similar to SI_ClkOut, the other output reference clocks of the microAptiv UP core, HCLK (for external
AHB-Lite bus interface logic) and UDI_gclk (for external UDI logic), have the same de-skew usage and proper-
ties. These clocks are gated off from the internal SI_ClkIn during “Sleep” mode for power-saving purposes.

8.2 AHB Bus Clock

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 101

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

8.2 AHB Bus Clock

The AHB bus interface on the microAptiv UP core runs synchronously to SI_ClkIn but can run at the same or lower
clock ratio, such as 2:1, 3:1 and 4:1. An AHB primary input clock is not actually present on the core; instead, AHB
interface flops are clocked by SI_ClkIn with an enable for driving outputs and sampling inputs on the appropriate
SI_ClkIn clocks.

8.2.1 SI_AHBStb to enable lower AHB Bus Clock Ratio

The core has one input, SI_AHBStb, for controlling the clock ratio. It is registered prior to use as an enable to clock
the registers of the AHB input and output interface signals. It enables the core flops of the AHB interface input sig-
nals, capturing the values driven from the system. Also it enables the core flops on the AHB interface data output,
driving new values on to the bus.

The output clock HCLK shows the reference AHB clock used by the microAptiv UP to the SOC designer. Figure 8.1
shows this signal in relation to the overall AHB I/O logic.

Figure 8.1 SI_AHBStb enables AHB bus clock ratio

8.2.2 Waveforms and Timing Requirements for fixed AHB Clock Ratios

The clocking scheme can support a lower AHB bus clock than the core clock, such as 2:1, 3:1 and 4:1. This section
includes waveforms showing the behavior and strobing for the 1:1, 2:1, 3:1, and 4:1 ratios.

HCLKICG
SI_AHBStb

HRESP
HREAYDY
HRDATA

HSIZE
HWDATA
HWRITE
HTRANS
HPROT

BIU

E E

SI_ClkIn

Control Logic

if_enable

 Clocking, Reset, and Power

102 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 8.2 Waveform for 1:1 Clock Ratio

Figure 8.3 Waveform for 2:1 Clock Ratio

Figure 8.4 Waveform for 3:1 Clock Ratio

HCLK

SI_AHBStb

SI_ClkIn

Sample_data

Drive_data

HCLK

SI_AHBStb

SI_ClkIn

Sample_data

Drive_data

HCLK

SI_AHBStb

SI_ClkIn

Sample_data

Drive_data

8.3 Reset and Hardware Initialization

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 103

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Figure 8.5 Waveform for 4:1 Clock Ratio

8.2.3 System Static Timing Analysis for AHB Clock Domain

The design is always synthesized to meet the tightest timing constraints from the 1:1 clock ratio. This allows it to be
used with any clock ratio, and the tight constraints can help meeting system timing requirements.

8.3 Reset and Hardware Initialization

Hardware initialization is accomplished through the SI_ColdReset, SI_Reset and SI_NMI input pins, and via the
EJ_TRST_N pin if the optional EJTAG tap controller is present within the microAptiv UP core. This section
describes how these pins are typically used in systems. These reset input pins must always be driven either to a logic
“1” or “0” to the microAptiv UP core, and not left floating or indeterminate. Each of the reset-related SI_* inputs trig-
gers a different type of exception within the microAptiv UP core; the MIPS32® microAptiv™ UP Processor
CoreSoftware User’s Manual [3] describes more details about these exceptions.

The initialization process for an microAptiv UP core requires a combination of hardware and software. This section
describes the basic hardware initialization interface. In accordance with the MIPS32 Architecture, only a minimal
amount of state is reset by hardware; so much internal state, like the Translation Look-Aside Buffer (TLB) and the
cache tag arrays, must be initialized via software before it can be used. See Reference [3] for a description of the soft-
ware initialization requirements of an microAptiv UP core.

8.3.1 SI_ColdReset

The high-active SI_ColdReset input is a hard reset signal that initializes the internal hardware state of the microAptiv
UP core without saving any state information. This input is active-high and must be asserted for a minimum of 5
SI_ClkIn cycles. The falling edge triggers a reset exception that is taken by the core as the highest priority. Typically,
SI_ColdReset is driven by a power-on-reset circuit in the system. For reliable operation, the power supply must be
stable and the SI_ClkIn clock must be running before SI_ColdReset is deasserted.

8.3.2 SI_Reset

The high-active SI_Reset input is a warm reset input to the microAptiv UP core. The input is active-high and must be
asserted for a minimum of 5 SI_ClkIn cycles. The falling edge triggers a soft reset exception which is taken by the
core. Typically, SI_Reset is driven by the OR of SI_ColdReset and the reset “button” in the system. Historically,
MIPS processors have required Reset to be asserted during a ColdReset. The microAptiv UP core does not require
this, so an assertion of SI_ColdReset does not need to force the assertion of SI_Reset. For reliable operation, the
power supply must be stable and the SI_ClkIn clock must be running before SI_Reset is deasserted.

HCLK

SI_AHBStb

SI_ClkIn

Sample_data

Drive_data

 Clocking, Reset, and Power

104 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Within the core, SI_ColdReset and SI_Reset are handled almost identically. The only difference is that SI_Reset sets
the StatusSR field to identify a soft reset exception.

8.3.3 SI_NMI

The SI_NMI input signals a non-maskable interrupt (NMI). This signal is active high and rising edge sensitive, but
must be asserted for a minimum of one clock cycle in order to be recognized. The sampling of the rising edge triggers
an NMI exception to be taken by the core. Typically, SI_NMI is used to indicate time-critical information, like
impending loss of power in the system.

8.3.4 EJ_TRST_N

An additional reset signal is required when the EJTAG TAP controller is present. EJ_TRST_N is an active low reset
signal that resets the TAP controller. This is an asynchronous reset and neither EJ_TCK or SI_ClkIn need to be tog-
gling for it to take effect. EJ_TRST_N must be asserted during power-on reset in order for the TAP controller and
processor to be properly initialized. In general, the low-asserted pulse width should be the equivalent of at least one
EJ_TCK cycle wide.

8.4 Power Management

Two primary mechanisms exist for managing system power with an microAptiv UP core: the hardware method of
slowing down (or stopping) the primary SI_ClkIn clock and the software method of initiating “sleep” mode via the
execution of the WAIT instruction.

8.4.1 Reducing SI_ClkIn Frequency

The most global method of power control is to hold the primary SI_ClkIn input static, or at a lower frequency, when
the microAptiv UP core is not in use, if desired by your system logic. The microAptiv UP core is internally fully
static so the clock can be held either high or low, and the input frequency can be changed from maximum to a lower
frequency, including zero, (and vice-versa) in a single cycle since there is no internal PLL.

The core outputs some pins which can be used, if desired, by the system logic to control entry or exit to this
low-power state. The SI_RP output is directly driven from the internal CP0 Status register, as an external indication
that it is desirable to place the microAptiv UP core in a low-power state by reducing the clock frequency. When the
RP bit in the Status register is set by software, system logic can detect the assertion of the SI_RP output and choose
to place the microAptiv UP core in a lower power state by reducing the clock frequency. Additionally, the SI_ERL
and SI_EXL outputs, derived from the ERL and EXL bits in the Status register, indicate that an error or exception has
been taken, and can be sensed to speed the clock frequency up again if desired only if the clock frequency is more
than 0 MHz (namely, SI_ERL/SI_EXL do not operate on free-running clocks). EJ_DebugM indicates that a debug
exception has been taken. This can also be used to speed the clock back up. These output pins need not be used to
control the core’s clock frequency when other system logic is available to indicate that the microAptiv UP core is not
being used.

8.4.2 Software-Induced Sleep Mode

Upon execution of the software WAIT instruction, the microAptiv UP core will enter a low-power state once all out-
standing bus activity has completed. Most of the clocks in the microAptiv UP core will be stopped, but a handful of
flops will remain active to sense an external hardware event that will awaken the core again. The external events that
can wake the core back up are any enabled interrupt, NMI, debug interrupt (via EJ_DINT), or reset. Power is reduced
since the global gated clock goes to the vast majority of flops within the microAptiv UP core is held idle during this
sleep mode. The SI_Sleep pin will be asserted when the core enters this low power mode. This can be used by the

8.4 Power Management

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 105

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

system logic to achieve further power savings. There will be no bus activity while the core is in sleep mode, so the
system bus logic which interfaces to the microAptiv UP core could be placed into a low power state as well.

 Clocking, Reset, and Power

106 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Chapter 9

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 107

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Design For Test Features

This chapter describes the Design For Test (DFT) features of the MIPS32 microAptiv UP processor core. The
MIPS-supplied DFT features are optional, so their existence on a particular core is dependent on choices made during
implementation.

This chapter contains the following major sections:

• Section 9.1 “Introduction”

• Section 9.2 “Scan Test”

• Section 9.3 “Integrated RAM BIST”

• Section 9.4 “User-Specific RAM BIST”

9.1 Introduction

An implementation of an microAptiv UP core may contain DFT features useful for supporting manufacturing test of
the core within an SOC environment. Typically, the DFT features will include one or more of the following:

• Scan test

• Memory BIST using integrated controllers

• Memory BIST using a user-specified method

• Other implementation-dependent features

Table 9.1 summarizes the key pin usage related to test modes present on the core. This table should be considered a
typical usage only, and other documentation related to the implementation details of a specific core must be con-
sulted.

Table 9.1 Core Input Values for Major Operating Modes

Input Pin

Mode

Normal (non-test) Scan Integrated BIST
User-specified

BIST

SI_ClkIn toggles toggles toggles toggles

EJ_TCK toggles when TAP active toggles - -

SI_ColdReset asserted for initialization - 1 impl-dependent

gscanmode 0 1 0 0

 Design For Test Features

108 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

The remaining sections in this chapter discuss the major test modes in more detail.

9.2 Scan Test

The scan methodology normally used on an microAptiv UP core is muxed scan. The exact scan functionality is
dependent on the choices made when the core was created. Specific details about scan operation are therefore imple-
mentation-dependent and beyond the scope of this document, but a few general comments are worth noting.

Three specific scan control pins besides the actual scan chain inputs and outputs are normally present. The scan con-
trol pins are:gscanramwr, gscanmode and gscanenable. If the scan insertion scripts for Mentor DFTAdvisor, pro-
vided with a soft microAptiv UP core, have been used for the scan insertion, then the scan-chains inputs and outputs
are normally called gscanin_x and gscanout_x, where x is an integer greater than or equal to 0 identifying the input
and output of each separate scan chain.

With muxed scan, the two primary inputs clocks, SI_ClkIn and EJ_TCK, must be running when the scan chains are
loaded and unloaded. During a capture cycle(s), one or both of the primary clocks may be active.

The typical use of the scan control pins is illustrated in Figure 9.1. Note that this figure denotes typical scan operation
only, and may not be relevant for a specific core. gscanmode must be asserted during any scan operations.
gscanenable is asserted when the scan chains are loaded and unloaded, but not during the capture cycles.The timing
of gscanramwr is not shown in the figure, but it must be stable around the capture cycle(s) and can be used to control
the read and write strobes for cache arrays, if the SRAMs are handled as a bypass flop during scan mode.

Figure 9.1 Timing Diagram of Typical Scan Chain and Capture Operation

gscanenable 0 1: chain operation
0: capture cycles

0 0

gscanramwr 0 assert during capture cycles
for RAM strobe control

0 0

gmbinvoke 0 0 1 0

BistIn[n:0] 0 0 0 impl-dependent

Table 9.1 Core Input Values for Major Operating Modes (Continued)

Input Pin

Mode

Normal (non-test) Scan Integrated BIST
User-specified

BIST

SI_ClkIn

EJ_TCK

gscanmode

gscanenable

gscanin_x

gscanout_x

Max Chain Depth
cycles capture

Max Chain Depth
cycles capture

9.3 Integrated RAM BIST

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 109

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

9.3 Integrated RAM BIST

The microAptiv UP core may optionally include an integrated BIST controller to test the cache SRAMs within the
core. Some signals present on the core interface, prefixed by gmb, are specifically dedicated to integrated RAM
BIST. These signals are always present on the core, but whether they are active or not is implementation-dependent.
In addition to the gmb* signals, some other signals are also active when using integrated RAM BIST.

The integrated BIST controller is capable of supporting two algorithms, March C+ or IFA-13. (IFA-13 includes sup-
port for retention testing.) The algorithm present (if any) is selected by an input pin.

9.3.1 RAM BIST-related Interface Signals

This section describes the relevant core interface signals for launching an integrated BIST test and reporting the
results.

9.3.1.1 Clocking

The clock for integrated memory BIST is provided by the primary clock input, SI_ClkIn. SI_ClkIn must be running
while the gmbinvoke and SI_ColdReset signals are asserted and for at least the first cycle after gmbinvoke is deas-
serted, in order to perform and complete a BIST test. The EJ_TCK input clock is unused for integrated BIST and may
be driven to any value.

9.3.1.2 Reset

SI_ColdReset must be asserted while integrated memory BIST is running. This forces the main clock tree derived
from SI_ClkIn to be running, since it could have been disabled by WAIT-induced sleep mode or unknown at power
up. SI_ColdReset should be asserted at least 5 SI_ClkIn cycles prior to the assertion of gmbinvoke, and held asserted
for at least one cycle after the deassertion of gmbinvoke.

9.3.1.3 Invoke

The primary enable signal to activate integrated memory BIST is gmbinvoke. The gmbinvoke signal should only be
asserted while SI_ColdReset is also asserted. After BIST testing is completed and gmbinvoke is deasserted, a normal
SI_ColdReset sequence should be applied to reset the processor for non-BIST operation.

9.3.1.4 Done Indication

When the BIST test is completed, gmbdone is asserted. If the memory BIST test is performed for both I-cache and
D-cache, gmbdone is asserted only when both tests are done. When gmbinvoke is deasserted, gmbdone is deasserted
in the following cycle.

9.3.1.5 Fail Indication

Separate fail signals exist for each sub-array in both the instruction and data caches. If a failure occurs during the test,
a fail signal is asserted accordingly: gmbddfail, gmbtdfail, gmbwdfail, gmbdifail, gmbtifail and/or gmbwifail. The fail

 Design For Test Features

110 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

signals are related to specific cache arrays as shown in Table 9.2. When gmbinvoke is deasserted, all fail signals are
deasserted in the following cycle.

9.3.1.6 gscanenable

The gscanable signal enables the scan chain operation. When memory BIST test is running, gscanenable must be
deasserted low.

9.3.1.7 gscanmode

The gscanmode signal enables scan test mode. When memory BIST test is running, gscanmode must be deasserted
low.

9.3.2 RAM BIST Signal Waveform for a Memory Test

A diagram with the timing of an integrated memory BIST sequence is shown in Figure 9.2.

Figure 9.2 RAM BIST I/O Signals Timing

Table 9.2 Fail Signals

Fail Signals

Instruction Cache Data Cache

Data
Memory

Tag
Memory

Way-Select
Memory

ISPRAM
Memory

Data
Memory

Tag
Memory

Way-Select
Memory

SPRAM
Memory

gmbdifail X

gmbtifail X

gmbwifail X

gmbispfail X

gmbddfail X

gmbtdfail X

gmbwdfail X

gmbspfail X

SI_ClkIn

SI_ColdReset

gmbinvoke

gscanenable

gscanmode

gmbfail

gmbdone

9.4 User-Specific RAM BIST

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 111

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

9.3.3 Number of Cycles for Memory BIST

The number of cycles for integrated memory BIST is determined by:

For the March C+ algorithm, NumberofOperations per bit is 14. For the IFA-13 algorithm, NumberofOperations per
bit is 16. WaySize is different with and without Parity, so the number of Cylcles will be different too.

9.4 User-Specific RAM BIST

User-specific RAM BIST utilizes the top-level BistIn and BistOut buses to test the on-chip trace SRAM array. The
usage and meaning of these pins are implementation-dependent.

Depending on a specific implementation, some of the scan related pins and SI_ColdReset might have to be asserted to
specific values during User-specified RAM BIST mode. It is normally required that the BistIn bus be tied to all zero’s
to enable normal functional mode and disable any User-specific RAM BIST.

If User-specific RAM BIST is not implemented, then simply tie the BistIn bus to all zero’s and ignore the BistOut out-
put bus.

Cycles WaySize kBytes() 1024 8×() bit
kByte
--------------⎝ ⎠
⎛ ⎞ cycle

bit
-------------⎝ ⎠
⎛ ⎞ Associativity× NumofOperations 32cycles+××=

 Design For Test Features

112 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Appendix A

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 113

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

References

This appendix lists other publications available from MIPS Technologies, Inc. that are referenced elsewhere in this
document. These documents may be included in the $MIPS_PROJECT/doc area of a typical microAptiv UP soft or
hard core release, or be available on the MIPS web site, under http://www.mips.com/publications/index.html.

1. MIPS® Physical Design Guide
MIPS document: MD00606

2. MIPS32® microAptiv™ UP Processor Core Family Data Sheet
MIPS document: MD00939

3. MIPS32® microAptiv™ UP Processor Core Family Software User’s Manual
MIPS document: MD00942

4. MIPS32® microAptiv™ UP Processor Core Family Implementor’s Guide
MIPS Document: MD00940

5. MIPS32® microAptiv™ UP Processor Core Family System Package & Simulation Flow User’s Manual
MIPS document: MD00943

6. EJTAG Specification
MIPS document: MD00047

7. MIPS® cJTAG Adapter User's Manual
MIPS Document: MD00862

8. MIPS® iFlowtrace Architecture Specification
MIPS document: MD00526

9. Core Coprocessor Interface Specification
MIPS document: MD00068

10. MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture
MIPS document: MD00090

11. Core Coprocessor 2 Module Template Application Note
MIPS document: MD00130

12. MIPS32® Pro Series® CorExtend® Instruction Integrator’s Guide
MIPS document: MD00324

13. MINI Testbench Specification
MIPS document: MD00493

14. Security Features of the M14K™ Processor Family

http://www.mips.com/publications/index.html

 References

114 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Appendix B

MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01 115

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

Revision History

Change bars (vertical lines) in the margins of this document indicate significant changes in the document since its last
release. Change bars are removed for changes that are more than one revision old.

This document may refer to Architecture specifications (for example, instruction set descriptions and EJTAG register
definitions), and change bars in these sections indicate changes since the previous version of the relevant Architecture
document.

Revision Date Description

01.00 July 31, 2013 • Initial 3_0_0 General Availability release.

01.01 July 30, 2014 • Update SP_DataTagValue signal.
• Changes to timer interrupt input.

 Revision History

116 MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide, Revision 01.01

IMAGINATION TECHNOLOGIES PROPRIETARY / CONFIDENTIAL

	MIPS32® microAptiv™ UP Processor Core Family Integrator’s Guide
	Table of Contents
	List of Figures
	List of Tables
	Overview
	1.1 Environment Variable Setup
	1.1.1 microAptiv UP Deliverables

	1.2 Other Documents

	Signal Descriptions
	2.1 Naming Conventions
	2.2 Top-level Hierarchy
	2.3 Detailed Signal Descriptions
	2.3.1 Signals at m14k_cpu Level
	2.3.2 External Interface Signals on m14k_top Level to Custom Blocks

	AHB-Lite Interface
	3.1 Interface Transactions
	3.1.1 Basic Transfers
	3.1.2 Transfer Types
	3.1.3 Transfer Size
	3.1.4 Burst Operation
	3.1.5 Waited Transfers
	3.1.6 Protection Control
	3.1.7 Locked Transfers

	3.2 Clock Ratios
	3.3 Write Buffer
	3.4 Merging Control

	Interrupt Interface
	4.1 Introduction
	4.2 Compatibility and Vectored Interrupt Modes
	4.3 External Interrupt Controller Mode

	EJTAG Interface
	5.1 EJTAG versus JTAG
	5.1.1 EJTAG Similarities to JTAG
	5.1.2 Sharing EJTAG Resources with JTAG
	5.1.2.1 Daisy-Chained TDI-TDO
	5.1.2.2 Multiplexed Pin Access

	5.2 How to Connect EJ_* Pins
	5.2.1 EJTAG Chip-Level Pins
	5.2.1.1 Optional ETRST* Pin
	5.2.1.2 Optional EJ_DINT Pin

	5.2.2 EJTAG Device ID Input Pins
	5.2.2.1 EJ_ManufID[10:0]
	5.2.2.2 EJ_PartNumber[15:0]
	5.2.2.3 EJ_Version[3:0]

	5.2.3 EJTAG Software Reset Pins
	5.2.3.1 EJ_PrRst Signal
	5.2.3.2 EJ_PerRst Signal
	5.2.3.3 EJ_SRstE Signal
	5.2.3.4 A Reset Logic Implementation

	5.3 cJTAG Interface
	5.4 Multi-Core Implementations
	5.4.1 TDI/TDO Daisy-Chain Connection
	5.4.2 Multi-Core Breakpoint Unit

	5.5 Trace Capability
	5.6 SecureDebug

	Coprocessor Interface
	6.1 Introduction
	6.2 Coprocessor Instructions
	6.3 Signal Configuration
	6.4 Interface Protocols
	6.4.1 Instruction Dispatch
	6.4.2 To Coprocessor Data Transfer
	6.4.3 From Coprocessor Data Transfer
	6.4.4 Condition Code Checking
	6.4.5 Coprocessor Exceptions
	6.4.6 Instruction Nullification
	6.4.7 Instruction Killing

	6.5 Power Saving Issues
	6.5.1 No Coprocessor Present
	6.5.2 How to Use CP2_idle
	6.5.3 Gating the Clock to the Coprocessor
	6.5.4 Using Strobe Signals as Gating Inputs on the Sub-interfaces

	6.6 Template for Coprocessor Modules

	Scratchpad RAM Interface
	7.1 SPRAM Features
	7.2 SPRAM Overview
	7.2.1 SPRAM Differences From a Cache
	7.2.2 Independent Tag/Data Accesses
	7.2.3 Timing Considerations
	7.2.4 Delayed Stores
	7.2.5 Tag Reads and Writes
	7.2.6 Backstalling the SPRAM Interface
	7.2.7 Access Granularity
	7.2.8 Write Strobe with 0 Write Mask
	7.2.9 Unified I/D SPRAM
	7.2.10 Restartability of SPRAM Accesses
	7.2.11 Connecting I/O Devices to the Scratchpad Interface
	7.2.12 Null Connection to Unused SPRAM Interface

	7.3 SPRAM Interface Transactions
	7.3.1 Single Read
	7.3.2 Single Multi-Cycle Read
	7.3.3 Single Write
	7.3.4 Single Multi-Cycle Write
	7.3.5 Simultaneous Tag Read and Data Write
	7.3.6 Back-to-Back Reads
	7.3.7 Read-Write-Read Sequence
	7.3.8 Read-Modified-Write Sequence (Locked transfers)
	7.3.8.1 RMW Operation Hit in DSPRAM
	7.3.8.2 A Store Operation to DSPRAM in the RMW Sequence
	7.3.8.3 RMW operation does not hit in DSPRAM

	7.4 External Access to Scratchpad Memory
	7.5 SPRAM Initialization
	7.6 Using the Same Design for ISPRAM and DSPRAM
	7.7 Multiple SPRAM Regions
	7.8 Implementation Recommendations
	7.8.1 Software-visible Configuration Information
	7.8.2 Region Sizes
	7.8.3 Unique Addresses
	7.8.4 Support ISPRAM Writes
	7.8.5 Virtual Aliasing
	7.8.6 SPRAM Parity Support

	Clocking, Reset, and Power
	8.1 Clocking
	8.1.1 SI_ClkIn Clock
	8.1.2 EJ_TCK Clock
	8.1.3 Handling Clock Insertion Delay

	8.2 AHB Bus Clock
	8.2.1 SI_AHBStb to enable lower AHB Bus Clock Ratio
	8.2.2 Waveforms and Timing Requirements for fixed AHB Clock Ratios
	8.2.3 System Static Timing Analysis for AHB Clock Domain

	8.3 Reset and Hardware Initialization
	8.3.1 SI_ColdReset
	8.3.2 SI_Reset
	8.3.3 SI_NMI
	8.3.4 EJ_TRST_N

	8.4 Power Management
	8.4.1 Reducing SI_ClkIn Frequency
	8.4.2 Software-Induced Sleep Mode

	Design For Test Features
	9.1 Introduction
	9.2 Scan Test
	9.3 Integrated RAM BIST
	9.3.1 RAM BIST-related Interface Signals
	9.3.1.1 Clocking
	9.3.1.2 Reset
	9.3.1.3 Invoke
	9.3.1.4 Done Indication
	9.3.1.5 Fail Indication
	9.3.1.6 gscanenable
	9.3.1.7 gscanmode

	9.3.2 RAM BIST Signal Waveform for a Memory Test
	9.3.3 Number of Cycles for Memory BIST

	9.4 User-Specific RAM BIST

	References
	Revision History

